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EDITORIAL PREFACE

The launch of a new book series is always a challenging event -- not only for the
Editorial Board and the Publisher, but also, and more particularly, for the first
author. Both the Editorial Board and the Publisher are delighted that the first
author in this series is well able to meet the challenge. Professor Freudenthal
needs no introduction to anyone in the Mathematics Education field and it is
particularly fitting that his book should be the first in this new series because it
was in 1968 that he, and Reidel, produced the first issue of the journal Edu-
cational Studies in Mathematics. Breaking fresh ground is therefore nothing new
to Professor Freudenthal and this book illustrates well his pleasure at such a
task. To be strictly correct the ‘ground’ which he has broken here is not new,
but as with Mathematics as an Educational Task and Weeding and Sowing,
it is rather the novelty of the manner in which he has carried out his analysis
which provides us with so many fresh perspectives. It is our intention that this
new book series should provide those who work in the emerging discipline of
mathematics education with an essential resource, and a a time of considerable

concern about the whole mathematics curriculum this book representsjust such
resource.

ALAN J. BISHOP
Managing Editor

vii
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A LOOK BACKWARD AND A LOOK FORWARD

Men die, systems last. Immortality is assured to those who build their name into
a system. Although even immortality is not what it used to be any more, and |
did not crave for it, | once a day set my mind on writing my first systematic
work, after a few that can rightly be called chaotic. The result has been the
mogt chaotic of dl — so chaotic that when the reader expects a preface he has
to wait for Chapter 6. Moreover the work is incomplete. When unexpectedly
Chapter 18, ‘Text and Context’, showed the first symptoms of dephantiads,
| cut it off, appointed Chapter 17 to be the last, and exiled the remainder to
a separate book, which is very likely to become still-born. Let me add that my
secretary and collaborator for dmogt 25 years, Mrs. Breughd read and wrote
the last line of the illegible Dutch manuscript of this book the day before she
retired.

But a manuscript like the present deserves a look backward by its author,
which at the same time should be to its reader alook forward.

A common theme of the greater part of my publications in mathematics
education has been: change of perspective; in particular what | cdled inversion
and conversion, a mathematical virtue, practised and cherished from olden times.
No mathematical idea has ever been published in the way it was discovered.
Techniques nave been developed and are used, if a problem has been solved,
to turn the solution procedure upside down, or if it is a larger complex of
statements and theories, to turn definitions into propositions, and propositions
into definitions, the hot invention into icy beauty. This then if it has affected
teaching matter, is the didactical inversion, which as it happens may be anti-
didactical. Rather than behaving antididactically, one should recognise that
the young learner is entitled to recapitulate in a fashion the learning process
of mankind. Not in the trivid manner of an abridged version, but equaly we
cannot require the new generation to startjust at the point where their predeces-
sors left off.

Our mathematical concepts, structures, ideas have been invented as tools
to organise the phenomena of the physica, socid and mental world. Phenom-
enology of a mathematical concept, structure, or idea means describing it in
its relation to the phenomena for which it was created, and to which it has been
extended in the learning process of mankind, and, as far as this description is
concerned with the learning process of the young generation, it is didactical
phenomenology, a way to show the teacher the places where the learner might
step into the learning process of mankind. Not in its history but in its learning
process that gill continues, which means dead ends must be cut and living
roots spared and reinforced.
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Though | did not use the term explicitly, didactical phenomenology already
played a part in my former work. In the present book | stress one feature more
explicitly: mental objects versus concept attainment. Concepts are the backbone
of our cognitive structures. But in everyday matters, concepts are not considered
as ateaching subject. Though children learn what is a chair, what is food, what is
health, they are not taught the concepts of chair, food, health. Mathematics is
no different. Children learn what is number, what are circles, what is adding,
what is plotting a graph. They grasp them as mental objects and carry them out
as mental activities. It is a fact that the concepts of number and circle, of adding
and graphing are susceptible to more precision and clarity than those of chair,
food, and health. Is this the reason why the protagonists of concept attainment
prefer to teach the number concept rather than number, and, in general, concepts
rather than mental objects and activities? Whatever the reason may be, it is an
example of what | caled the anti-didactical inversion.

The didactical scope of mental objects and activities and of onset of conscious
conceptualisation, if didacticaly possible, is the main theme of this phenom-
enology. It was written in the stimulating working atmosphere of the IOWO.* So
it is dedicated to the memory of this institution that has been assassinated, and
to dl its collaborators, who continue to act and work in its spirit.

* The Netherlands ‘ Institute for Development of Mathematics Education’.



CHAPTER 1

AS AN EXAMPLE: LENGTH

1.1-1.11. PHENOMENOLOGICAL

1.1-3. What isLength?

11 “Length” has more than one meaning. “At length”, “going to the utmost

length”, “length and width” include in their context “length” in different
meanings. The one | am concerned with becomes clear if dong side the question

what is length?
| put afew other questions:

what is weight?
what is duration?
what is content?

“Length”, “weight”, “duration”, “content” are magnitudes, among which
length hasits specid status.

If | use the word length in the sense, made more precise here, | mean length
of something, of a “long” object. “Length’ then is synonymous with “width”,
“height”, “thickness’, “distance”, “latitude’, “depth”, which are related to
other dimensions or stuations. For the sides of a “lying” rectangle one prefers
“length” and “width”, for a “standing” one, “width” and “height”.

1.2. Without stressing it, | have turned my question “what is length?” towards
an answer such as “length of ... is ..."”. This is a typicaly mathematical turn:
transforming apparently isolated terms into symbols of functions. The question

what is “mother” ?
what is “brother”?
what is “neighbor”?

are more easly answered according to the pattern

mother of... is...
brother of... is...
neighbor of... is....

More precisdly:
mother of X is she who has born X,
1
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brother of x is every y such that y is a mae and x and y have the same
parents,
neighbor of x is every y such that x andy live beside each other.

Afterwards “mother” can dso be defined in an “isolated” way:
x is mother if thereisa y such that x is mother of y.

Linguigicdly “man”, “stone’, “house” belong to the same category as
“mother”, “brother”, “neighbor” — as nouns they enjoy a substantidity, though
that of “mother”, “brother”, “neighbor” differs from that of “man”, “stone”,
“housg’. “Being mother”, “being brother”, “being neighbor” get a meaning
only by the — explicit or implicit — addition “of whom”. In “they are brothers’,
“they are neighbors’ the additiona “of ...” seems unnecessary but is not: they
are brothers or neighbors of each other.

13 Back to “length”, interpreted in “length of ...” & a functional symbol:
a function that talks about “long objects’ how long they are, though not neces-
sarily numerically specified, asin

the length of this bed is 1.90 m.

Functional value may be vague: long, very long, short, very short, and so on.
The reason why | neglect these values now is that | will start by focusing on a
phenomenology of mathematical structures. Are “long”, “very long”, “short”,
“very short” not mathematical concepts? Such questions will be answered later
on; in order not to complicate things, | delay the answer.

14. Magnitudes*

Before continuing let me consder the terms mentioned earlier. All of them aim
a functions:

weight: weight of (a heavy object),
duration: duration of (a time interval),
content: content of (a part of space).

Let me introduce abbreviations:

I(x): length of x,
p(x): weight of x,
d(x): duration of X,
V(x): content of x,

* Directed magnitudes will incidentally be considered in Sections 15.9-12. Otherwise
“magnitude” is always understood in the classicd way. In this context “rational” and “real”
aways means “ positive rational” and “positive red”.
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where x issomething that can properly be said to have a length, weight, duration,
content.

We again pose the question of the possible vaues of the function | (and of
p, d, v). Not “long short”, “heavy light”, “big small”, respectively, but Snce
we speak mathematics, more precise values. This does not oblige us to state
something like 1.90 m, 75 kg, 7 sec, 3 m*®, expressed in the metric system, or
in any a priori system of measures. This is a liberty we can profit from to get
deeper insight. Indeed, it appears that we can go rather far without accepting
any specia system of measures.

Let uscdl the

values of | lengths,
values of p weights,
vauesof d durations,
vaduesof v contents,

and the

system of lenths L,
system of weights W,
system of durations D,
system of contents  V,

and look for their properties.

15. Adding Lengths

The first thing we notice is that we can add lengths even before conceiving them
numerically. How is it done? Given two lengths a and B, we provide ourselves
with two “ long objects’ x andy with lengths

(x)=a, I(y)=86,

respectively, and compose them (in a way that asks for detailed explanation)
into a new “long object” x @ y. This object has a certain length, consequentialy
named I(x @ y). It was our intention to define the sum of lengths a and g and by
definition we put

a+pB=I(xoy),
that isto say
151 x)+I1(p)=Il(xey).
In other words
the length of the composite equals the sum of the composing parts.
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As regards this kind of definition one has to pay attention to one point:
For the lengths x and y we have chosen representative “long objects’” x and 'y,
respectively, with lengths as prescribed. Instead we could have chosen other
representatives, say X' and y', thus such that again

Ix)=a, 16/) =8,

which would lead to a composite x” @ y'. In order for the definition 1.5.1. to
be meaningful, we must be sure that

152 I(x'ey)y=I(x @y),
in other words, that

the length of the composite does not depend on the choice of the
representatives.

| have to take care that my way of combining “long objects’ fulfills this
condition.

In a amilar way this ought to be true of weights. Given twoweights aand
the sum of which | propose to define, | take two “heavy objects’ x and y
with weights « and g, respectively, compose them into a new “ heavy object”
x &y and define

p(x) +p(y)=p(x @y).

Again, replacing x and y by x' and y' with the same weights, respectively, must
not change the weight of the composite. This requirement looks self-evident, and
it is 0 for a good reason, indeed: we would never have focused on length,
weight, and so on if this condition were not fulfilled.

A second remark: If composing is meant to lead to defining the sum, it must
be carried out in such a way that the components do not overlap. Suppose |
want to add a length « to itsdf in order to define the length « + . Then for
each of the summands | need another representative, thus

I(x)=a, Ip)=aq,
in order to get
ata=Ix)+I1()=1(xey).

So | cannot manage with one representative for each length. Fortunately with
lengths it is rather easy to provide onesdf with two, three, or more representa-
tives of the same length; instruments like a ruler can repeatedly be applied. In
the case of weights and so on, the difficulty of obtaining enough representatives
looks greater, but thisis a point we are not concerned with here.

In carrying out the operaion © asimagined in the various cases, order does
not play arole and, as a consequence, addition of lengths, weights, etc., obeys
the laws of commutativity and associativity:
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atf=p+a,
@+P)+ty=at+(@B+7).

The first property stated in the systemsL, P, D, and V of lengths, €tc., therefore
is
I A commutative and associative operation (+) of addition in L, and
SO on.
16. Order of Lengths

Adding will later bejoined by subtracting; that is, “ the smaller from the bigger”.
But “smaller” and “bigger” are ideas we have not yet come across. They will
now be considered.

Relations like “smaller bigger” belong to the so-cdled order relations. any
pair of dementsa, 8 of L isin exactly one of the situations

161 a<g, a=4, f<a
and for three of them, a, 8,y €L,
162 ifa<fandg<ythena<y

holds (the so-cdled transitivity).
Such an order relation can now be defined in L by means of the addition.
We express the property that

by adding, something can become only larger,
in a formula
163 a<a+xk

for any lengths a and . This immediately ensures transitivity 1.6.2. Indeed,
if @<pandp<1y,thenthereisakand a A such that

B=a+tk, Y=B+A,

Y=B+A=(@tk)+A=a+(k+Q),
and thus
a<?y.
The first requirement, 1.6.1, on an order relation is a hit trying. It means

164 If « # 8, thenthereis
gither a k with B=a +k,
ora A with a=g+A,

though not both together.
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For a moment | cal two “long objects’ x, y directly comparable if either x
can be considered as a composing part of y ory as a composing part of X. Then
1.6.4 can be translated as follows into the language of “long objects’:

165  Giventwo “long objects’ x, y, then | can find directly comparable
“long objects’” X', y' such that I(x) =I(x"), I(y) = 1(»"), and however
| choose X, y' in this way, one thing is true:
either X' is a composing part of y',

ory isacomposing part of X' .

The second property we have stated for the systemsL, W, etc. is
Il. The definition a < « + « for dl lengths e, x determines atotal order
inL, etc.
1.7. Multiplying Lengths

If we repeatedly add the same length, then the resulting lengths can be denoted
as

la=aq,
2a=ata,
3a=atata,
and 0 on; in genera
ne=a+...+awithn summands.
Lawslike

(m + n)a =ma + na,
(mn)a = m(na),
n(a+p)=na+n,

if o <8 then na <np,

1.7.1

are obvious.

From adding we have now derived multiplying dements of L, etc., by postive
integers, that is, elements of N+. Asaninverse of this operation one has dividing,
which means:

Given alength @ and an n € N+, then the equation

172 nB=a«
has a solution 8. There is only one such g,sinceif
nf' =a,
then
B<B or B=F or B'<B.
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In the first and third case thiswould resultin
a=nf<nf =a, a=nf <nf=aqa,
respectively, which is impossible, and leaves us with
B=6"
The solution g of 1.7.2 gets the name

1
=—a.
n

Thus—'ll-a is defined by
173 n (i> a=a.
n
This then is our third property of lengths, etc.:

II. Forevery a € L, etc., and every n € N* there is one ‘rIT“ €L, €.,
such that

(e)-a

The following lawsfor dividing are eedly verified:

1/1)\ 1
174 7(—;) —ma,

1 11
w@tf)=—at—0E,
. 1 1
ifa<§, then7a<78.

18. Rational Multiples of Lengths

Multiplying and dividing elements of L, etc., by elements of N+ can be combined.

One puts
n

181 m(l a) =ﬂa,
n

which results in multiplying of lengths by postive rational numbers. Since,
however, arational number can be denoted in various ways,

m_4km
n kn’

we have to make sure that the definition 181 is vdid; that is, we have to prove
that
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) i)

This is indeed true. According to 1.7.4

_l_a__l_(_l_
ik \nY

i ) o) ()

Thus we can multiply every length, etc., by every podtive rational number
re€ Q+. We easly find the laws, for r, s €Q*,a, E L, efC..

(r+s)a=ro+sa
r(sc) = (rs)a

182 riatB)=rat+rp
if « <, then ra <rg.

thus

19. Real Multiples of Lengths

Starting from one length, etc. say @, we can form dl its rationa multiples.
They constitute a set Q*a. In Q+a two arbitrary elements are rational multiples
of each other. So Q*a cannot possbly exhaust what we imagine the system of
lengths to be. Indeed, the diagonal and side of a square are not rational multiples
of each other. However, Q*a does exhaust the system of lengths, etc. “aproxi-
mately” . One knows about a property, the so-cdled Archimedean axiom:

V. Given an a € L, €c, then there is no dement of L, etc., bigger
than dl of Q*a, and no eement of L, etc., smaler than dl of Q+a.

| now take an arbitrary g € L, etc. It does not necessarily belong to Q+a,
but according to IV it must lie “in between”. For eachr € Q+

191 ra<f or ra=f or B<ra
holds. | now want to represent g asareal multiple of ¢,
8=ua, u €ER+
in such away that the order fits, that is
ifu<v then wuwa<va for u,v€ERT,
In particular for r € Q*,

ifr<u then ra <ua,

192 fu<r then ua < ra.

How to find such a u? Well, 191 causes a partition of »r € Q+ into three
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classes (the second can be empty, or can consst of one element if B is arationa
multiple of ). Such a partition is caled a Dedekind cut:

thelower dass thereQ+ withra<g
theupper dass  thereQ* withg<re,

where a most one r € Q+ can escape this division. Now there is areal « € R+
that “ causes’ the cut, that isto say

ifra<p then r <u.
if B<ra then u <r.

If now we put
B=ua,
we fulfill the requirements of 1.9.2.
It has been shown that
of two given dements of L, €fc., each is a positive real multiple of
the other.
We can now conclude with the property
V. For eaxch @ € L, etc., and each u € R+, there is an ua € L, etc.
Similarly to those of Q* one can formulate laws for «, v € R+and
a,BEL etc.:

(u +v)a=uatrva

193 u(vo)=@v)
u(a+p)=ua+uf
ifu<v then ua < va.

110. Length Measure

Let us break off the expostion and not insst on a systematic approach to

magnitudes.

For instance we could continue with a numerical treatment of magnitudes:
A measuring unit (m, kg, sec, m*, or suchlike) is chosen in order to express each
length, and so0 on, as a positive rea multiple of the unit. Then each length, etc.,
is represented by a measuring number and according to its generation we find

the fundamental rule
under the composition ® the measuring numbers are added,

from which follows among others
the longer, heavier,... object has the bigger measuring number.
111, What is Lacking Here
The preceding was an example of phenomenology; namely, for the mathematica
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structure “ magnitude”. Or rather, it was a fragment of such a phenomenology.
No attention was paid to measuring; connections between different magnitudes
should have been considered; and finally, what has not been mentioned at dl
is that length is ascribed not only to “long objects’ but dso to broken and
curved lines. How broken lines, say the perimeter of a triangle, should be dealt
with is easy to guess. Curved lines are a different case. The classcd way is ap-
proximation by broken lines but | shall skip it here in order to resume it later on.

1.12-1.29. DIDACTICALLY PHENOMENOLOGICAL

The preceding was not didactical phenomenology. In order to stress the dif-
ference | started with phenomenology as such. But dso in the sequel didactical
phenomenology will often be preceded by phenomenology as such, to create a
frame of concepts and terms on which the didactica phenomenology can rest.

The difference between phenomenology and didactical phenomenology
will soon become apparent. In the first case a mathematica structure will
be dealt with as a cognitive product in the way it describes its — possibly non-
mathematical — objects; in the second case, it will be dedlt with as alearning
and teaching matter, that is as a cognitive process. One could think about one
step backwards: towards a genetic phenomenology of mathematical structures,
which studies them in the cognitive process of mental growth.

One might think that a didactical phenomenology should be based on a
genetic one. Indeed | would have been happy if, while developing the present
didacticd phenomenology, | could have leaned upon a genetic one. This, how-
ever, was not the case, and the longer | think about the question, the more |
become convinced that the inverse order is more promising. In the sequence
“ phenomenology, didacticd phenomenology, genetic phenomenology” each
member serves as a bass for the next. In order to write a phenomenology of
mathematical structures, a knowledge of mathematics and its applications
suffices; adidactical phenomenology asksin addition for a knowledge of instruc-
tion; agenetic phenomenology is a piece of psychology.

All the psychologica investigations of this kind which | know about suffer
from one fundamental deficiency: investigations on mathematica acquisitions
(a certain ages) have involved the related mathematical structures in a naive
way — that is, they lack any preceding phenomenological anadlysis—and asa
consequence, are full of superficia and even wrong interpretations. The lack of
a preceding didactical phenomenology, on the other hand, is the reason why
such invedtigations are designed in dmogt al cases as isolated snapshots rather
than as stagesin a developmental process.

1.13-1.25. COMPARISON OF LENGTHS

113-14. Length Expressed by Adjectives
113, Many mathematical concepts are announced by adjectives. Adjectives
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belonging to length are: “long, short”, but aso “broad, tight”, “thick, thin”,
“high, low”, “deep, shdlow”, “far, near”, “wide, narrow”, and finaly dso
“tal, sturdy, diminutive, indgnificant”. Of course the ahility to digtinguish
such properties precedes the ahility to express them linguisticaly. For the adult
it is — at least unconsciously — clear how these expressions are related to the
same magnitude, length, and he often presupposes children to be well acquainted
with this relation. Researchers in this field are often not aware of this difficulty.
It is not farfetched to ask onesdlf how the child manages to develop a knowledge
of these connections. A disturbing factor is the overarching of this complex of
adjectives by “big and little”, which can serve so many ams (up to “big boy”
and “little girl™).

Bastiaan (5; 3) askshow bigis amole. When | show with my handsamol€ slength, heinsists
“no, I mean how high”. He is compelled to differentiate “big”. Clearly he is conscious of
the fact that both cases mean alength.

The indght that both expressions mean alengthis not at dl trivial, for instance,
that a high tree, if cut, is long. As a matter of fact, even adults may have
problems with the equivalence of distances in the horizontal and the vertical
dimensions, at leest with regard to quantitative specification.

How does the connection within this complex of adjectives come into being?
How is the common dement constituted? If | may guess, | would attribute a
decisve role to the hand and finger movements that accompany such statements
as that long, that wide, that thick, and so on (likewise that short, and so on) —
movements that can turn in different directions and possess different intensities
but dways show the same linear character. (Compare this with the mimic
expressions of embracing, which may accompany “that much”, but dso “that
thick”, and with the mimic and acoustic expression of lifting belonging to
“that heavy”.)

The common element in this complex of adjectives for length is possibly not
yet operaiond in dl young school children; as a matter of consciousness it may
even be absent in many older ones. Acquiring it and becoming conscious of it are
an indispensable condition for mathematica activities.

114. Around such adjectives as “long” there is a complex of relational expres-
sonslike:

longer, longest, aslong as, lesslong, not aslong as, too long, very long.

Here again the ability of distinguishing precedes that of linguistic expression
(for ingtance, something cannot pass through a hole because it is too thick;
the smaller cube is placed upon the bigger). Inhibitions work against using
comparatives and superlatives — “big” is used where “bigger” and “biggest”
are meant.

The adjectives of theladt lig aim at comparing objects with respect to length.
This activity develops long before what mathematicians cal the order relation
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of lengths is constituted, not to mention becoming conscious of the order
relation. The congtitution of an order relation in whatever system includes at
least the operational functioning of transitivity, that is, drawing factual conclu-
sons according to patternslike

aaslong ash,
b aslong asc,
thusaaslongasc

and

a shorter than b
b shorter than ¢
thus a shorter than c,

which of course does not mean the ability of verbalisng or even formalising
transitivity.

Contradictory Piaget, P. Bryant* showed that young children (from the age of four onwards)
posss an operational knowledge of transitivity. On the other hand, | reported** on third
graders who could apply the trangtivity of weights in ssesaw contexts but were not able
to understand a formulation of transitivity.

Little if any information on the development of the concept of length can be
drawn from traditional research. Thought on this subject is obscured by such
terms as “ conservation” and “reversibility”, which are supposed to cover the
most divergent ideas, and by a faulty phenomenology.

1.15.  Congruence Mappings

One of the mathematical notions that have been absorbed by “conservation” in
order to be mixed together with quite different onesis

invariance under a st of transformations.

Asan asde | will illugtrate this notion by a number of examples:

The number of elements of a set (“ cardinality”) isinvariant under one-to-
one mappings.

Convexity of a plane figure is invariant under affine mappings.***
Parallelism of linesis invariant under affine mappings.***

* P. Bryant, Perception and Understanding in Young Children, London, 1974, Chapter
3.

** \Weeding and Sowing, p. 255.

*** A reader not acquainted with the concept of “affine mapping”, may read instead:
pardld projection.
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The difference between the surfaces of a sphere and of a ring is invariant
under arbitrary deformations (the surface of a ring cannot be deformed
into that of a sphere).

Lengths of line segments and measures of angles of pairs of lines are in-
variant under congruence mappings of the plane or the space (movements
and reflections, with glide reflections included).

The length ratio of line segments and measures of angles of pairs of lines
are invariant under similarities.

The property of being a regular pentagon is invariant under smilarities.

The property of being a cube with side 1 is invariant under congruence
mappings.

The property of a plane figure to represent the digit 2 is invariant under
movements (though not under reflections).

The shape of a figure is invariant under similarities.
Boththe shapeandsize of afigure are invariant under congruence mappings.

The expression congruent is well-known; congruent figures are, as it were, the
same figure laid down in various places. In mathematics this concept is made
more precise by that of a congruence mapping, which extends to the whole
plane or space; then figures are caled congruent if they can be carried into
each other by congruence mappings.

The smplest figure is the line segment. “ Equal” rather than “ congruent”
line segments is an older terminology. The now prevailing terminology reserves
“equality” to coincidence; that is, actual identity. Yet congruent line segments
areequal in asense; that is, with respect to length. And conversely: line segments
with the same length can be carried into each other by congruence mappings.

116. Rigid Bodies

Line segments are mathematica abstractions. They are connected with the
former “long objects’ via the phenomenon of the rigid body. A rigid body can
be displaced, and provided it is not badly belaboured, it remains congruent with
itself under this operation. Rigidity is the physica redlisation of the property we
cdled invariance of shape and size under movements. The fact that in geometry
we consider by preference properties that are invariant under movements is
related to the dominance of rigid bodies in our own environment — molluscs
would prefer another kind of geometry.

| am pretty sure that rigidity is experienced at an earlier stage of development
than length and that length and invariance of length are congtituted from rigidity
rather than the other way round. Rigidity is a property that coversdl dimensions
while length requires objects where one dimension is privileged or stressed.
However, stressing this one dimension may not lead to restricting the preserving
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transformations. If lengths are to be compared, the free mobility of rigid bodies
must play its part. The mobility must be fully exploited; al movements must
be alowed, not only the most conspicuous trandations, but aso rotations, in
order to compare “long objects’ in dl postions. The shape of a body or the
stressing of one dimension as its length may not result in restricting the mappings
under which rigidity expresses itsdf as invariance. Adjectives like “high, low”
within the complex of terms that indicate length can exert an influenceto redtrict
the st of transformations; “high, low”, stressing one direction in space, can
lead to redtricting the set of transformations to those that leave invariant the
vertical direction — displacements along and rotations around the vertical —
a restriction that would impede the overal comparison of line segments and
“long objects’.

1.17. Smilarities

Side by side with the congruence mappings | repeatedly mentioned the similar-
ities. The latter play a part in interpreting visua perception. “What is farther
away, looks smaler” (at least at big distances); thisis a feature unconscioudy
taken into account by a perceiver and sometimes made conscious to himsdf —a
curious interplay which has been studied many times. If a rigid body moves
away, its shape as understood by us remains invariant; visualy conceved the
rigid bodies are invariant even under smilarities, while the smilarity ratio
depends on the distance between object and perceiver.

Nevertheless just this fact can contribute a great dedl to the mental constitu-
tion of rigidity. The invariance suggested by the continuous behaviour of some
striking characteristics might provoke the attribution of more invariances, in
particular those of Sze and length.

1.18-20. Flexions

1.18. The rigidity of rigid bodies has to be understood with a grain of salt.
Though its wheds and doors can turn independently, a car can globaly and
under certain circumstances be consdered as a rigid body. Another extreme
cae is clay, which by mild force can be kneaded and deformed. In defining
rigidity dl depends on what you cdl “not badly belaboured”. A liquid or
a gas can be given some other shape without using any force, but according to
the degree of rigidity more or less strong forces are needed to deform arigid
body. More or less rigid parts can be movable with respect to each other, such
as in the case of anima bodies, while certain arrangements of the parts with
respect to each other may be privileged, such as the state of rest, which can
be congruently copied ad lib. It isthat privileged state in which length measures
of anima bodies are defined. The heights of, say, two people are compared
while they are standing; we are convinced that they do not change when they
st down, and we know that they will show anew the former relation if they
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rise again. We ds0 judge that if they st down and the taller person looks smaller,
the difference must be ascribed to longer legs — something we can reconsider
under the viewpoint of addition of lengths.

119. What comes about here is another principle of invariance of length, that
is to say, invariance under akind of transformations other than planar or spatia
congruence mappings. It is transforming “long objects’ by plying or bending
them with a negligible effort: two objects to be compared are laid side by side
or one on top of the other while certain deformations are dlowed. Typicd
examples of this are measuring instruments other than the ruler and the measur-
ing stick — for instance, the measuring tape, the folding or coiled pocket-rule
— but a more primitive device used to measure lengths, the piece of string,
should not be forgotten. It shows marvelloudy two ways of comparing lengths:
in the tight state it measures a straight length, and fitted around a curvilinear
shape it measures a circumference.

As opposed to the rigid bodies conddered earlier, | will cal these objects
flexible the admissble deformations of these objects being caled flexions.
Flexions are reversble — this is an important feature. Moreover, flexible objects
posess one or more privileged states. Among the privileged states there might
be one in which the object is straightened and used as a measuring instrument:
the measuring tape, the folding pocket-rule, the coiled-rule, and again the
piece of string that can be stretched with a little force and that in this state
resigts further stretching. One's own body is of the same kind; in order to have
it measured, one jumps to one's feet (though not to one's toes). Similarly, one
measures the length of a stalk or reed or a stair-carpet: by stretching. Or of a
ca antenna: by pulling it out. A sheet of paper is flexible, though there is a
well-defined state of maximal stretching. Plasticaly deformable substances such
as cday are again different, a “long object” made of clay, if carefully handled,
can be considered as flexible, though a kneading transformation is no flexion.

120. Where can we put the flexions mathematically? The mathematical counter-
parts of the rigid bodies (which may be moved without being badly belaboured)
were the geometrical figures subjected to movements in the plane or in space,
transformationsthat map everything congruently; in particular every line segment
whatever its length or direction might be. If our objective is measuring lengths,
this requirement is exaggerated; in order to serve for measuring, the “long
objects’ need display this invariance in the length direction only. Only in the
length direction should the object be rigid; there is no need for rigidity in the
other dimensions. This kind of object is mathematicaly idedlised by what is
caled curves — curves which are described by a moving point or appear as
boundaries of a plane figure. Of course curves which are — entirely or partialy
— draight are dso admitted: straight lines and broken lines. It is these mathe-
matical curves that are subjected to mathematical flexions. What does this
term mean? If it refers to curves, | am concerned with one dimension only
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—no width and no thickness — and in this one dimension they shdl berigid.
The arc length, which as a measure replaces straight length, should be invariant
under flexions. Mathematically, flexions are defined as mappings of curvesthat
leave the arc length invariant.

But what do we mean by the arc length of a curve? The answer looks obvious:
straighten the curve while not stretching it and read the arc length on the
final straight line segment. Well, isn't it a vicious crde? What do we mean
by straighten without stretching? No stretch — this just means that the arc
length must be preserved, but arc length il has to be defined. As a matter of
fact, it is curious that | prohibited stretching only, and kept silent about shrink-
ing, but of course the mistake you can make when graightening the object,
is pulling too hard and stretching. This shows once more that the aleged clarity
of the straighten-out definition of arc length restsnot on visua but on kinesthetic
intuition.

Yet another definition of arc length deserves to be considered. In order to be
compared, curves are rolled upon each other. In particular, in order to measure
the length of a curve, it is rolled upon a straight line. Rolling yes, but of course
skidding is forbidden. But what does it mean mathematically: no skidding? Thet
the pieces rolling dong each other have the same (arc) length. This again doses
the vicious circle.

There is no escape: In order to define flexions mathematically, we must first
know what arc length is, and arc length must be defined independently with
no gppedl to mechanics.

How this is to be done, | have aready mentioned. First, one defines the
length of a polygon — that is, a curve composad of straight pieces — asthe sum
of the lengths of those pieces. Given a curve, it is approximated by “inscribed”
polygons, that is, with their vertices on the curve. The smaller the composing
straight pieces, the better the curve is approached. In this approximation process
one pays attention to the respective lengths. as the curve is approached by the
polygons, the lengths converge to what is considered as the length of the given
curve. Not only should the total curve get an arc length by this definition,
but dso each partia curve, and it is plain (though the proof requires some atten-
tion) that these lengths behave additively: if a curve is split into two partia
curves, the length of the whole equals the sum of the lengths of the parts. It is
now clear what we have to understand by a mapping that preserves the arc
length (by a flexion): not only should the tota arc length be left invariant,
but dso that of each part.

It is strange that an intuitive idealike invariance ofarc length and straighten-
ing without stretching requires such a cumbersome procedure in order to be
explained mathematically. The reason is now obvious: when trying attempts
at explaining arc length mathematically, we are compelled to renounce our
mechanical experiences. It isparticularly intriguing that physically | can compare
two flexible objects by flexion or the borders of two plane shapes by ralling the
one upon the other, before | start measuring length, whereas our mathematical
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definition of flexion presupposes arc length, which includes the whole measuring
procedure and even the addition of lengths.

121, Rigidity and Flexibility
We have been concerned with two kinds of mappings:

congruence mappings in plane of space, and
flexions of curves.

Both are mathematically defined by the invariance of length, though the first
requirement cuts deeper than the second if the view is fixed on curves and arc
length.

1g'he fact that congruence mappings and flexions leave length invariant is
implicit in their definition. In physics the counterpart of mathematical con-
gruence mappings and flexions is the movement of rigid bodies and the bending
of flexible bodies, but whether in physica practice something is (a least ap-
proximately) a rigid body or a flexible body and which physica operations are
alowed if length should (at least gpproximately) be preserved are physicd facts,
depending on experiences we have somehow acquired. This acquisition of
experience starts rather early, certainly as early asin the cradle. It is empirica
and experimental, and though this experimenting starts, as Bruner asserts, in an
enactive way, in the course of development it is supported more and more
by representative images of what is recollected or pursued (the ikonic phase),
and it becomes more and more conscious in order to be verbalised (the symbolic
phase). In the context of the phenomenon of “length” a phenomenologica
andysis is required to state and to distinguish invariance under congruence
mappings and flexions, but anyway it is clear that the related learning process
starts in the enactive phase (with no representative images and unconscioudy,
that is in the most effective way) and that pieces of it can be made conscious
in the learning process.

Bastiaan (3; 9) finds a glass marble on the foot path: “ If | push hard, it would roll into the
street”. It does happen. The marble rolls under the tyre of a car parked at the curb. Bastiaan
cannot reach it. | show him a little stick. By sight hejudges: “It is not hard enough.” It
is a soft stick, but nevertheless he succeeds.

This example does not concern using rigid or flexible objects to compare lengths.
What matters here is experiences with mechanica properties of things. At a
certain moment in his development a child judges a sght whether something
is “hard” enough to be applied as alever to exert a certain power (ikonic phase),
and he even finds words — hard enough —to express this fact (symbolic phase).

| do not have the dightest idea how this complex of mechanical properties
becomes mentally constituted; an able physicist, observing children, could dis-
cover alot of thingsin thisfield. There is one conjecture which | dare pronounce:
that rigidity precedes flexibility. The environment strongly suggests the rigid
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body as a model. Surprising experiments show that under conditions of in-
complete information about kinematical phenomena there is a strong tendency
to interpret them as movements of rigid bodies.

As a consequence | think that length is first constituted in the invariance
context of congruence mappings — that is, connected to rigid bodies — and only
at alater stage gets into that of flexions — that is, of flexible objects. This can
happen if the child sees lengths compared or even measured by flexible instru-
ments — fitting (* isthe deeve long enough?’) and measuring with atape.

In any case it is crucia to pay attention to the double invariance context
of length.

1.22. Make and Break

| hesitated — unjustly asit will shortly appear — asto whether | should augment
the two kinds of transformations that show invariance of length (that is, con-
gruence transformations and flexions) with athird, which | would call

break—maketransformations:

a“long object” isbroken into pieces and remade.

The “long object” may be a dtick that is factually broken, or astring that is
cut, or atrain of blocks that is split into two or more partial trains. In the first
two examples remaking will not yield a complete restoration of length even if
carried out carefully, with some loss in the second case if the partial strings are
tied together. In the third case the restoration can be complete though it need
not be: the parts can be put together in another order, and this can even be
vishle if the particular blocks are distinguished by length, colour, or other
characteristics.

It is a meaningful and non-trivial statement that under break—-make trans-
formations length is invariant. It is meaningful if it is the original and final state
that are compared, disregarding the intermediate ones. Indeed, how should we
formulate the question if the intermediate states are to be admitted? “Do they
remain as long together?’ If “together” means adding lengths, this question
is premature a the stage of smply comparing lengths, and if “ together” means
“taken together” the question ams at comparing the initid with the — now
asomental — find state, whichisno news.

Whenever the break—make transformation reproduces the initid state, the
question “ are they of the same length?’ is trivial. Or rather, the answer reveds
only whether the child that was questioned has remembered the initial state and
is able to compare an actual and a mentally redised state with each other. If
the fina state is not wholly identical with the initial one, the answer dso reveds
whether the child knows which characteristic matters if length is meant. These
two abilities will be reconsidered | ater.

Ingght into length invariance under break—make transformations can be split
into two components:
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first, that under breaking (partitioning) and making (composing) “long
objects” are transformed into long objects, and

second, that in composing “long objects’ length is not influenced by the
order of the composing parts.

Actualy, these two ingghts form the basis for measuring lengths and will reap-
pear in that context. If the second insight is to be placed into the context of
invariance of length with respect to certain transformations on “long objects’,
instead of break—make transformations we could better use the term

permutation of composing parts.

I can now explain the hesitation | felt before writing this section. Break—
make transformations or permutations of composing parts as a third kind of
transformations look logicdly and phenomenologicaly superfluous. Within
a phenomenology of magnitudes, and particularly length, as sketched in the
beginning, the break—make transformations (permutations of composing parts)
and the associated invariance of length can be derived from the congruence
mappings, flexions and their invariance properties. But this derivability is a
consequence of coupling the comparison of lengths with measuring, which is
geneticdly and didactically premature. It is true that composing “long objects’
occurs in that phenomenology as a special operation, indicated by ®,but the
context in which it occurs is length rather than comparing length; namely
the formula

I(x ®y)=1l(x) +1(y).

® occurs there as a logica rather than geometrical and mechanical operation,
x ® y appears as something that is uniquely determined by x andy, whereas for
break—make transformations it is essentid that x and y can be put together
in various ways and however composed, yield objects of the same length.

1.23-24. Distance

1.23. Upto now inour didactical phenomenological analysis we have consdered
length as a function of concrete objects (possbly replaced by their mental
images). This, however, does not cover dl cases of length. Length as distance
between A and B answers the question “how far is B from A?" In a purely
formal sense “how far?’ is quite another interrogative than “how long?’ In
“how far ... 7 two points occur as variables, whereas in “how long is this
object?’, the object is the only variable. Length is a function of whole objects,
whereas distance is a function of two points “here” and “there”. We are 90
accustomed to the procedure which connects both of them that we can hardly
imagine the early stage where we must have acquired it by a learning process
and ask ourselves whether this connection is as obvious for children asiit is for
us.
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If “how far?" is to be reduced to “how long?’, a “long object” must be
placed between A and B, between here and there. So, if A and B are railway
dations or stopping places aong a highway, the rail connection or the stretch
of highway may be considered as concrete “long objects’ whose distance is
asked for. In general, if there exists a concrete path between A and B, their
distance is the length of the path; if there are more such paths, it should be
stipulated which one is meant. But how far is it from the front room of my
ground floor to the rear room on the first floor? From here to across the canal,
if no bridge is visible? From here to the sky? Only from the context can it
be understood what is meant. In the context of geometry, mechanics, and
optics the distance is measured dong a straight ling; in the context of spherica
trigonometry and in the context of (surface of air) navigation, aong arcs of great
circles, “geodesics’ or shortest paths as determined by straightened strings on
curved surfaces. Of course, withthis remark | do not mean spherical trigonometry
or navigation should have been studied or exercised in order to decide that
lengths should be measured along geodesics, contexts like this develop long
before they are made conscious. The value of rectilinearity is suggested to the
young child, enactively, if he is caled to come straight in your open arms, the
ikonically by dl the horizontal and vertical straight lines in his environment,
and symboalicaly by straight lines in schemas and by the word “straight line”.
The part played by rectilinearity in the conditution of “length” remains un-
conscious until it is explicitly discussed. Straightening flexible objects if lengths
are to be compared may dill be an automatic act — for instance, automatic
imitation — and there might be children who as automaticaly put between two
unrelated points a mental “long object”, an imagined ruler, or a string in order
to interpret distance as length. Well-known experiments where children get
disoriented as soon as a screen is placed between the two points may prove
how important this act of inserting a “long object” can be for reducing “how
far?” to “how long?’. But whatever these experiments mean, if some judgment
about the distance of unrelated points must be motivated, one cannot but
make explicit the necessity of rectilinear connections. From this moment
onwards the significance of rectilinearity for the concept of length becomes
more and more conscious —another connection betweenlength and rectilinearity
will be indicated later on.

1.24. How does a child learn what matters if lengths are to be compared? Sets
of objects of the same kind but of different length may play an important part:
big and little spoons (and equal ones), long and short trains (and equal ones),
high and low trees (and trees of equal height). The objects are compared at sight
if they are lying pardlel and sde by side; in order to be compared they are
brought into such a position, physicaly or mentally, as rigid bodies, by con-
gruence mappings. This requires comparing physicd with mental objects, and
mental ones with each other. Memory for length initially functions in a rather
rough way, it seems. Remembering length during long periods remains a difficult
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task. As for myself, | am often surprised that relations of length differ greatly
from what | remember they should be. Comparing objects side by side gains
precision in the course of development: the ruler is laid dose to the line to be
measured, while observing the prescription to aim perpendicularly to the line.
The connection between “length” and “distance” is stressed, and the weight is
shifted to “distance” if one of the objects to be compared, or both of them,
bear marks by which the ends of the objects to be compared can be indicated.
Comparing can be done indirectly, using the transitivity of the order relation;
for instance, by taking distances between fingers of one hand, between two
hands, between the points of a pair of compasses, or between two extant or
intentionally placed marks on a long object, and carrying them from one place
to another. With dl these methods length as a function of long objects is replaced
by distance as a function of a pair of points. It aready starts with showing
“that big” or “that small” with fingers or hands, athough in its exaggerated
appearance this gesture is more an emotiona expression of “awfully big” or
“miserably small” than a true means to compare lengths. More refined methods
of comparing lengths are based on geometry and will be dealt with in that
context.

125. Conservation and Reversibility

Before extending the andysis of measuring lengths | tackle the question already
touched in Sections 1.12 and 1.15: how psychologists interested in the devel op-
ment of mathematical concepts deal with such concepts, in particular length.
The invedtigations, started by Piaget, show the following pattern. The genera
problem is to acquire knowledge about the genesis of such fundamental concepts
as number, length, area, shape, mass, weight, and volume. Subjects are shown
groups of objects which agree with respect to one or more of these magnitudes
(the same number of chipsin a row, reeds of the same length, and so on) and
are asked to state that they agree with respect to the characteristic A (number,
length, or suchlike). Then one of the objects of the group is subjected to a
transformation that according to adult insight does not change the characteristic
A while other characteristics may be changed (for instance, changing the mutual

distances of the chips in the row or bending the reed). After this operation
the subject is asked whether the characteristic A has remained unchanged;
if this is affirmed, one speaks of conservation, and the subject is classified as a
“consarver”. Psychologists are reasonably unanimous about the average age of
conservation of the various characteristics, whereas people who have some
didactica experience with children usudly judge these ages absurdly high.
The large percentagesof non-conserversin psychologica experiments are achieved

by a particular strategy: The transformation that should be ascertained to
conserve A is intentionally chosen so that it changes ancther characteritic
B =0 dradtically that the attention is diverted to B (for instance, if A is cardinal
number or mass, a striking change of length, or if A is length, a striking change
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of position or shape). What is actually being investigated is whether the subject
is able to separate these characteristics sharply from each other and how strongly
he can resigt attempts at mideading him. Built-in mideading isin generd charac-
teristic of the psychological, as opposite to the didactical, approach.

By no means should the question be rejected as to the stage of development
at which children master invariances of certain magnitudes. On the contrary, it
is a merit of Piaget’s to have been the first to have formulated such problems.
The problem, however, is obscured by the use of such terms as “ conservation”;
often the researchers themselves have no clear idea of the kind of transformations
with respect to which the so-caled conservation should be established. For
each experiment designed to take in young children, one can contrive a more
sophigticated version to embarrass adults. For instance, show a person two
congruent paper clips and ask him whether they are equdly long; the question
is of course affirmatively answered. Then unfold one of them, straighten it out,
and repeat the question. Whatever he answers can be wrong. It depends on what
the experimenter meant. An adult subject would react to the question by asking,
“What do you mean?’ (In our terminology, length invariance under congruence
mappings? Or under flexions?) Young children in the laboratory are not likely
to ask counter questions. The fact that they do not ask proves that they are
intimidated (in the terminology of the psychologist, “put a their ease”) —their
critical behaviour being eliminated by situational means.

For a good experimental design it is indispensable that experimenter and
subject have a clear idea of the kind of transformations with respect to which
invariance is to be established. Perhaps psychologists would answer that then the
fun goes out of it, as the chance of getting wrong answers would be minimised.
So much the better, | would say. Such a result would better agree with the
opinions of children’s capacities held by didacticians.

Of course this does not mean that dl problems are disposed of. | could
enumerate a lot of developmental problems that from the viewpoint of a sound
phenomenology are interesting enough. For instance | would like to know
whether constituting rigidity mentally precedes length, whether length invariance
under congruence mapping and length invariance under flexions help or impede
each other, what role is played by smilarities in the mental constitution of
length, and how the equivalence of “long” and “far” is acquired. So there are
many more questions | would like to have answered. The most urgent question,
| think, is about the significance of the break—make transformations for so-
cdled conservation (not only of length). If | may trust my own unsystematic
experience, | would consider them as crucia. Yet in order to answer such
questions, a quite different design of experiments is required than that of
snapshots, registering which percentage of subjectsat a certain age do “conserve”.
Also required is a more positive mentality than that of tricking children into
making mistakes.

Anocther vague term that is often used in that kind of research is “reversi-
bility”. Origindly it was related to answers given by subjects when they motivate
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pronouncements on conservation. For instance, one of two strings of equa
length is made crooked while the other remains straight; the subject is asked
whether they are Hill equaly long. If it is affirmed, the subject is asked to give
reasons. If he answers “If straightened out, it is again the same’, he shows
“reversibility”; that is, the capacity to mentaly reverse the transformation,
which is considered a good argument for equality of length. Of course, it is no
argument at dl, and though it is interpreted by the experimenter as such, it was
probably not meant that way by the subject. From the equality of initid and
find states nothing can be derived about intermediate ones. If the subject had
said, “They are equal because | got the one from the other by mere crooking”,
the answer would have been as good as, or even more to the point than, the
argument of reversal. The subject, however, would not have been counted
among the true conservers, because he lacked reversibility.

This “reversibility” as a proof for “conservation” is the origind meaning,
but subsequently it has been used in many other and mutually unrelated senses.
There are, however, dso researchers who regject the reversibility argument. They
postulate standard answers that have to be given in order to establish conserva
tion. Then the question “why is this as long as that?’ must not be answered by
a materiad argument but by a formal one, if the subject is to be classified as a
conserver; he should answer something like “ because they have the samelength”.
To the question “why do they have the same content?’, it must be “because
they include equal parts of space”. It goeswithout saying that such investigators
are even farther away from meaningful mathematics.

The lack of ingght into the difficulties with the equivaence between “long”
and “far” has already been mentioned. Often they are increased by a stress on
intentionally mideading connecting paths — a pattern in the plane that suggests
a system of paths or two points on the rim of a round table that invite marching
aong the edge — where the experimenter had, of course, meant straight paths.

These details may suffice. | would certainly not judge that al the investiga
tions | have in view are worthless, but many of them suffer from wrongly placed
sresses. The method of snapshots need not be rejected but in order to be
applied it requires a background theory — or at least ideas — about the inter-
mediate development. Such theories do exist, but they are so vague and genera
that anything can be fitted to them and they do not provide criteria for attribut-
ing relevance to certain questions or complexes of questions.

What is lacking here can be made clear parabolicaly. Let us assume somebody
is investigating the development of flora during the year by snapshots. On trees
and brushes he natices various kinds of buds at various stages. In the next
snapshots he identifies leaves and petals a the same places. Later on the former
have remained whereas the latter have been replaced by fruit. Then the fruit,
and findly the leaves too, have disappeared. He has not paid attention to
stamens, pistils and insects and does not know where the fruit and leaves went.
Perhaps he does not even know that the leaves and flowers were locked up in
the buds. His phenomenology was utterly fragmentary, he did not know what
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he had to look for, and there is a good chance that he will wrongly interpret
what he has seen. Perhaps terms like growing, blooming, bearing fruit are lacking
in his vocabulary, or they mean states rather than processes. Ideas about develop-
ment would have given him a greater chance of noticing essentials.

1.26-29. MEASURING LENGTHS

1.26. Yardsticks

Measuring length requires instruments — measuring sticks or rules. At first the
measuring instrument will be smaller than the thing to be measured. Remarks
to the contrary in the psychological literature rest on misapprehensions about
measuring, or on artificial experiments.

The first yardstick | see used by children is the step. For a long time they
do not care whether dl steps are equally long. Almost aways they count one
step too many (the zero step as one). From the beginning it is clear that fewer
geps mean a shorter interval, though it is not as dear that composition of
intervals goes along with addition of numbers of steps. At about the same time
as measuring distances by steps, or somewhat earlier, one notices the activity of
jumping over a certain number of pieces in patterns of tilesin order to see how
far one can jump. | do not claim that this is really a measuring activity, though
thiskind of jumping may influence measuring by steps.

Bagtiaan (4; 10) spontaneousy measured the width of apath by steps. “Thisis gx further”.
| show him | can do it in one step. He does the same with two steps. He continues measuring
by pacing.

Badtiaan (6; 5) has made a large construction of roads, bridges, wals and tunnels in a
sandpit. In order to make a drawing of the construction he measures distances with his
two forefingers pardld at a fixed distance (about a decimeter), proceeding with the left
forefinger in the hole made by the right one.

Bastiaan (dmost 7; 6) measures distances with a span between thumb and little finger
which he knows is one decimeter.

Measuring with a measuring instrument means laying down the instrument
congruently a number of times until the length to be measured is exhausted.
If the object to be measured is a distance between two points, rectilinearity
of continuation must be practised as the measuring instrument is repeatedly laid
down. It is surprising that even 12 years olds may neglect this. If the straight
line between the two points is blocked, the path is partialy replaced by a
pardlel one. It is a remarkable fact that usualy paralelism is better observed
than is the rectilinearity of the continuation in the non-blocked case. Indeed,
the latter is more difficult. To do this reasonably, one has to develop a certain
technique, which requires more geometrica insght than — unfortunately — is
being taught in the primary school.

There is a rich variety of yardsticks. Mogt of the traditional length units are
taken from the human body: inch (which means thumb), finger, pam, foot,
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short and long €ll, yard, step, double step, fathom; for larger distances the
stadium (= 100 fathoms = 600 feet), the Roman mile (= 1000 double steps),
an hour's walk. The so-caled metric measures are related by powers of 10:
metre, kilometre, centimetre, millimetre, micrometre, picometre. At variance
with them: light year, parsec.

127. Change of Yardstick

If the object to be measured is not exhausted by applying the yardstick con-
gruently a number of —say n — times, the problem arises of what to do with
the remainder. In many cases one will resign oneself to the fact that a bit is left
or is lacking, which means that the object is a bit longer or abit shorter than n
times the unit. Likewise the case where the remainder looks to be about half,
one-third, or two-thirds the unit is not problematic. For greater precision amore
systematic procedure is required. Two systemsare familiar: common and decimal
fractions. A less usual variation is binary fractions (or fractions with another
base). A most natural system, now obsolete because of its complexity, is con-
tinued fractions, as | have explained elsewhere*. If a, is the measuring unit and
a, the object to be measured,

Qg =pyay ta,,

then theremainder a, (< a;)is used as anew unit,
a4y =paa; tas,

and s0 one goes on, expecting that eventually the division will terminate, that is
n_1 =Pnln.

Then a, is a common measure of a;, and a,, and by reckoning backwards, one
will find, say

ag =ray,
a; =say,

which implies
a, =—a
0 =<

It is an advantage of this procedure that it involves a systematic search for a
a denominator, provided a, is truly a rational multiple of a4, ;that is, if the
procedure indeed stops. But this need not happen. Then the procedure has
to be stopped at a certain stage, the remainder is neglected, and the length
of a, is expressed approximately in termsof a, .

With the methods of decimd fractions one is saved the trouble of finding

* Mathematics as an Educational Task, p. 203.
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a suitable denominator. The measuring unit is again and again divided into ten
equal parts (even if such a partitioning is not yet marked on the measuring
instrument), and one has only to see how often the subdivided unit goes into
the remainder. It is a disadvantage of the decima method that even smple
fractional lengths such as —;- of the unit can only be indicated approximately.

Length is one of the concepts by which common and decima fractions can
operationally be introduced. This subject will be resumed in the chapter on
fractions.

1.28-29. Measuring Length at an Early Sage

1.28. Terms that should occur early in measuring length are “double”, “three
times’, “hdf,” and “a third". It struck me that 5-6 year olds who reasonably
understood length did not know these terms, or &t least, not as related to length;
the dominance of the adjective “big” seems to block applying “double” and
“half” to the linear dimension.

Bagtiaan (5; 3), & a certain moment during a straight walk at the other sde of our cand
between two bridges at a large distance from each other, does not understand the question
“Are we half-way?’, but later spontaneously indicates the point where the “middle starts’
(that is, the second half).

Terms like “half full” and so on (of a glass) function earlier and better.
Additivity of length is ill a problem at this age. A long object is paced off
anew after it has been lengthened by a second object. It is not noticed that the
second pacing gives another length for the first piece.
One should realise that these are not trivial things —knowing

how lengths are composed,

that the results are again lengths,

that pieces of lengths are again lengths,

that the length measure of a part is smaler than that of the whole, and
that length measures behave additively under composing.

1.29. The length of flexible objectsis measured after straightening. The circum-
ference of curved figures is measured by means of a flexible object — a string
— lad aong side. It can dso be done by rolling the curve upon a straight line.
It is not at dl trivia that this yieds the same result. The length arising from
rolling a circle is grosdy underestimated by children, and even by adults.

Conversely, ralling awheel can be used to measure linear distances (expressed
by the number of revolutions of a bicycle whedl or a measuring whedl).

Geometrical knowledge can lead to more sophisticated methods of measuring
distances. Some of them are possble a an early age. We will reconsider this
question later.

Reading and designing maps with distance data does not necessarily presup-
pose acquaintance with ratio.
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The relation between distances and the times needed to cover them does not
necessarily presuppose an acquaintance with velocity.

Climbing gtairs can be put into relation with distance.

The distances in anetwork of streets are accessble early.



CHAPTER 2

THE METHOD

2.1. Aspects ofPhenomenology

| started with an example to be used as a subject matter which | can agpped to
when | explan my method. | chose “length” because it is both a rich and
relatively easy subject.

First of dl, what of the terms “phenomenology” and “didactical phenom-
enology”? Of course | do not mean “phenomenology” in the sense that might
be extracted from the works of Hegel, Husserl, and Heidegger*. Though the
clearest interpretation | can imagine is that by means of the example of chapter
I, which is to be continued in the following chapters, nevertheless it is worth-
while trying something like a definition.

| start with the antithesis — if it redly is an antithesis — between nooumenon
(thought object) and phainomenon. The mathematical objects are nooumena,
but a piece of mathematics can be experienced as a phainomenon; numbers
are nooumena, but working with numbers can be a phainomenon.

Mathematical concepts, structures, and ideas serve to organise phenomena —
phenomena from the concrete world as well as from mathematics — and in the
past | have illustrated this by many examplest*. By means of geometrical
figures like triangle, parallelogram, rhombus, or sguare, one succeedsin organis-
ing the world of contour phenomena; humbers organise the phenomenon of
quantity. On a higher level the phenomenon of geometrical figure is organised
by means of geometrical constructions and proofs, the phenomenon “number”
is organised by means of the decima system. So it goes in mathematics up to
the highest levels. continuing abstraction brings similar looking mathematical
phenomena under one concept — group, field, topological space, deduction,
induction, and 0 on.

Phenomenology of a mathematical concept, a mathematical structure, or a
mathematical idea means, in my terminology, describing this nooumenon in
its relation to the phainomena of which it is the means of organising, indicating
which phenomena it is created to organise, and to which it can be extended,
how it acts upon these phenomena as a means of organising, and with what
power over these phenomena it endows us. If in this relation of nooumenon
and phainomenon | stress the didactical element, that is, if | pay attention to
how the relation is acquired in alearning-teaching process, | speak of didactical

* |Is it by accident that — with Habermas included — the names of the most pretentious
producers of unintelligible talk in the German philosophy start with an H?
**  Mathematics as an Educational Task, in particular, Chapters Il and XVII.
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phenomenology of this nooumenon. If | would replace “learning—teaching
process’ by “cognitive growth”, it would be genetic phenomenology and if
“is ... in a learning—-teaching process’ is replaced by “was ... in history”,
it is historical phenomenology. | am aways concerned with phenomenology
of mathematical nooumena, athough the terminology could be extended to

other kinds of nooumena.

2.2. ThePart Played by Examples

The piece of phenomenology with which Chapter | began was clearly an a
posteriori constructed relation between the mathematical concept of length and
theworld of long objects structured by an operation of composing, @. Length was
interpreted as a function on thisworld. | did not analyse how | arrived at this
function. Although this was indispensable, | omitted it because | had to tackle
this question in the didactica phenomenologica section and | wanted to avoid
duplication. But as a consequence the didactical phenomenologica section con-
tains pieces of pure phenomenology, such as Section 1.15 about the congruence
mappings and Sections 1.18-19 about the flexions. Likewise in the sequel | will
not clearly separate phenomenology and didactica phenomenology from each
other. As promisedin the preface | would not sacrifice readability to systematics.

Where did | look for the materia required for my didactical phenomenology
of mathematical structures? | could hardly lean on the work of others. | have
profited from my knowledge of mathematics, its applications, and its history.
| know how mathematical ideas have come or could have come into being. From
an andyss of textbooks | know how didacticians judge that they can support
the development of such ideas in the minds of learners. Finaly, by observing
learning processes | have succeeded in understanding a bit about the actual
processes of the congtitution of mathematical structures and the attainment of
mathematica concepts. A bit — this does not promise much, and with regard to
quantity it is not much, indeed, that | can offer. | have aready reported afew
examples of such observations, and | will continue in the same way. | do not
pretend that at this or that age this or that ideais acquired in this or that way.
The examples are rather to show that learning processes are required for things
which we would not expect would need such processes. In the first chapter |
showed a child suddenly confronted with the necessity to differentiate “big”
according to various dimensions, a child placing “far” into the context of “long”
and learning about the connection between “half” and “middle’. | am going
to add another story, which happened a few hours after the event where “half”
and “middle” were tied to each other:

Badgtiaan's (5; 3) sger (3; 3) breaks foam plagtic plates into little pieces, which she cdls
food. He joins her, takes a rectangular piece, breaks it in about two halves, lays the two
haves on each other, breaks them together and repests the same with a three-layered
combination — the fourth piece was aready small enough.
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| do not know where | should place this observation, whether | should classfy
it & mathematics, say geometry, or whether it belongs to genera cognitive
behaviour. | report this observation because | think it is one of the most im-
portant | ever made because it taught me a lesson on observing. | do not know
whether the age of 5; 3 is an early or a late date for this kind of economic
breaking; | do not know either whether Badtisen imitated or adapted something
he had observed before. | know only one thing for sure: that what he did is
important and worth being learned. For mysdf it is fresh materid to withess
that in no way do we redise dl the things children must learn. If | look at what
people contrive to teach children, | fed inclined to cdl out to them: do not
exert yourself, smply look, it is a your hand.

Why do people not look for such simple things, which are so worth being
learned? Because one half of them do not bother about what they think are
slly things, whereas those who do bother are afraid to look dlly themselves if
they show it. Weeding and Sowing is full of such smple stories. | told them
in lectures. |1 do not care whether a large part of the audience interprets my
reporting as senility, provided that by my example a smal part of the audience
is encouraged to follow suit — this, indeed, requires courage.

2.3. Enactive, Ikonic, Symbolic

Above | used Bruner's triad “enactive, ikonic, symbolic”. Bruner* suggested
three ways of transforming experiences into a model of the world: the enactive,
the ikonic, and the symboalic representation. Corresponding to the dominance of
one of these, he distinguishes phases of cognitive growth.

Bruner's schema can be useful. It has been taken over by others, and its
domain of application has been extended, in particular towards the attainment
of concepts in learning processes, where smilar phases are distinguished. Later
| will explain my objections to the idea of concept attainment as such, although
| would not oppose the extension of Bruner’s triad to concept attainment.
As a matter of fact, in Bruner's work there is an example that shows how the
three ways of representation can be extended to concept attainment: enactively
the clover leaf knot is a thing that is knotted, ikonically it is a picture to be
looked at, and symbolically it is something represented by the word “knot”,
whether or not it is accompanied by a more or less stringent definition.

There is a well-known pleasantry: ask people what “spird” dairs are. All
react the same way: they make their forefinger mount imaginary spird stairs.
Of course, if need be, they would be able to draw them. Does this mean that
they are in the enactive or in the ikonic phase? Of course not. For the concept
in question they possess a symbol, the words “spiral stairs’, though if adefinition
is to be produced, one would have more or less difficulty in passng from the
enactive or ikonic to the symbolic representation.

* Sudies in Cognitive Growth (Edited by J. S. Bruner), Toward a Theory of Instruction,
1966, pp. 10-11.
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Consider the number concept “three” and the geometrical concept “straight”.
Before the child masters these words, he can be familiar with what they mean:
clapping his hands thrice and running straight to a god if it is suggested to him
(the enactive phase); sorting out cards with three objects or straight lines pictured
on them (the ikonic phass). Mastering the word three (or straight) means he is
in the symbolic phase, since “three” as a word is a symbol for the concept
three (or “straight” is for straight). But likewise the three dots on dice can be
a symbol; for instance, in playing the game of goose. A child that countsintel-
ligently is in the symbolic phase even if this counting is accompanied by moving
counters on the abacus. Adding on the abacus is enactive only for a moment.
After the first experience it has become symbolic, though the symbolism differs
from tha of the written digits. The Roman numeras are as symbolic as the
Arabic ones. Notches and tdlies to indicate numbers belonged to the symbolic
phase, even before people invented numerals — they are as symbolic as Roman
and Arabic numerals. The cashier in the supermarket who prints amounts of
money is neither enactively nor ikonicaly busy. A little child who claps his
hands in joyfulness expresses his fedlings symboalicaly even if he cannot yet
pronounce the word joy. As early as kindergarten, children accept a drawing of a
dance position where dancers are represented by strokes rather than manikins.
If the doors of the men's and ladies rooms are distinguished by plates of figures
in trousers and skirts it does not mean that the decorator imagined the users to
be in the ikonic phase; he did so because this difference is differently symbolised
in the hundreds of languages that mankind speaks and writes — moreover the
plates themselves are already symbols.

With these examples | intend to say that in learning—teaching situations,
which are our main interest, Bruner's triad does not yield much. Bruner's
domain of application is the psychology of the very young child, and in this
period the phases can meaningfully be filled out.

2.4-5. Concept Attainment and the Constitution of Mental Objects

24. 1 would like to stress another idea, aready stressed in my earlier publica
tions. Let me start with a semantic analysis of the term “concept”. If | discuss,
say, the number concept of Euclid, Frege, or Bourbaki, | set out to under-
stand what these authors had in mind when they used the word “number”. If |
investigate the number concept of a tribe of Papuans, | try to find out what
the members of this tribe know about and do with numbers; for instance, how
far they can count.

It s|ems to me that this double meaning of “concept” is of German origin.
The German word for concept is Begriff, which etymologicaly is a trandation of
Latin “conceptus’ as well as “comprehensio” and which for this reason can
mean both “concept” and “(sympathetic) understanding”. *“Zahlbegriff”
can thus mean two things, number concept and understanding of number;
“Raumbegriff,” concept of space and geometrical insight; “Kunstbegriff,”
concept of art and artistic competence.
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Actually, in other languages too “concept” is derived from aword that means
understanding (English, to conceive; French, concevoir) which, however, does
not have the mideading force that the German begreifen has. | cannot say
whether it has been the influence of German philosophy — in particular, philos-
ophy of mathematics — that created the double meaning of number concept,
of space concept, and in their train as it were, of group concept, field concept,
st concept, and s0 on. At any rate the confusion has been operationa for
a long time and has been greatly reinforced by the New Math and by a ra-
tionalistic* philosophy of teaching mathematics (and other subjects) which
in no way isjustified by any phenomenology. It isthe philosophy and didactics
of concept attainment, which, of old standing and renown, has gained new
weight and authority in our century thanks to new formulations. In the socratic
method as exercised by Socrates himsdlf, the sharp edges of concept attain-
ment had been polished, because in his view attainment was a re-attainment,
recalling lost concepts. But in general practice the double meaning of concept
has been operational for a long time. Various systems of structural learning
have only added a theoretica besis and sharp formulations. In order to have
some X conceived, one teaches, or tries to teach, the concept of X. In order
to have numbers, groups, linear spaces, relaions conceived, one indills the
concepts of number, group, linear space, relation, or rather one tries to. It
is quite obvious, indeed, that at the target ages where this is tried, it is not
feasible. For this reason, then, one tries to materidise the bare concepts (in
an “embodiment”). These concretisations, however, are usudly false, they
are much too rough to reflect the essentids of the concepts that are to be
embodied, even if by a variety of embodiments one wishes to account for more
than one facet. Ther levd is too low, far below that of the target concept.
Didactically, it means the cart before the horse: teaching abstractions by con-
cretising them.

What adidactica phenomenology can do isto prepare the converse approach:
starting from those phenomena that beg to be organised and from that starting
point teaching the learner to manipulate these means of organising. Didactical
phenomenology is to be caled in to develop plans to redise such an approach.
In the didactical phenomenology of length, number, and 0 on, the phenomena
organised by length, number, and so on, are diglayed as broadly as possible.
In order to teach groups, rather than starting from the group concept and
looking around for material that concretises this concept, one shdl look first
for phenomena that might compel the learner to congtitute the mental object
that is being mathematised by the group concept. If a a given age such phe-
nomena are not available, one gives up the — useless — attempts to instill the
group concept.

For this converse approach | have avoided the term concept attainment

* In the 18th century sense of apriori concepts epistemology.
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intentionally. Instead | speak of the constitution of mental objects* which
in my view precedes concept attainment and which can be highly effective even
if it is not followed by concept attainment. With respect to geometricaly
realisable mental objects (square, sphere, paralels) it is obvious that the constitu-
tion of the mental object does not depend at dl on that of the corresponding
concept, but this is equaly true for those that are not (or less easily) geomet-
ricaly realisable (number, induction, deduction). The reader of this didactical
phenomenology should keep in mind that we view the nooumena primarily
as mental objects and only secondarily as concepts, and that it is the material
for the congtitution of mental objects that will be displayed. The fact that
manipulating mental objects precedes making concepts explicit seems to me
more important than the divison of representations into enactive, ikonic, and
symbolic. In each particular case one should try to establish criteria that ought
to be fulfilled if an object is to be considered as mentally constituted. As to
“length” such conditions might be

integrating and mutually differentiating the adjectives that indicate length,
with “long, short”,

comparing lengths by congruence mappings and flexions,

measuring lengths by multiples and smple fractions of a measuring unit,

applying order and additivity of measuring results, and

applying the transitivity of comparing lengths.

2.5. In opposition to concept attainment by concrete embodiments | have
placed the congtitution of mental objects based on phenomenology. In the first
approach the concretisations have a transitory significance. Cake dividing may
be forgotten as soon as the learner masters the fractions agorithmicaly. In
contradistinction to this approach, thematerial that serves to mentally constitute
fractions has a lasting and definitive value. “First concepts and applications
afterwards’ as it happens in the approach of concept attainment is a strategy
that is virtualy inverted in the approach by constitution of mental objects.

* Fischbein cdls them intuitions, a word | try to avoid because it can mean inner vison
aswell asilluminations.
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SETS

3.1-9. Setsin Advanced Mathematics

3.1 Setsasan Aim in ltself

“Sets as anam in itself” is arestricted, amost sterile, and hardly popular domain
of mathematical research. Terms characterising it are cardinality, continuum
hypothesis, well-ordering, transfinite ordinals, alephs. Up to the middle of the
present century there was a certain need in algebra and analysis for transfinite
ordinas, which subsequently were diminated by means of the so-cdled Zorn's
lemma.

For a while, general set theory was a subject of profound axiomatic research;
in particular, the continuum hypothesis was in the focus of attention.

3.2. Sets as Substrata of Sructures

Wherever sets in advanced mathematics are not an am in themsdves, they
fulfill various tasks. For instance, they serve as substrata for structures — a
metric space, a group, a category is a set with a number of properties. (Sometimes
the term “set” is verbally replaced by “class’ in order to avoid certain paradoxes
of st theory.) Structuring the substratum set can happen in various ways, for
instance:

a et becomes a metric gpace by putting a distance function upon its pairs
of elements,
a set becomes a group by prescribing a certain operation between its
eements, and
a st becomes a category by imposing certain mappings between the
member sets.
If sets serve as substrata for certain structures, they arein generd not subjected
to drastic set theory operations. Subsets are formed, mainly to introduce sub-
structures; substrata of structures are mapped on each other to define mappings
of the imposed structures; set theory products are formed to get structure
products of the imposed structures; and the substratum set is partitioned, for
instance, as a set of equivalence classes, in order to derive new structures.

3.3. SetsasalLinguistic Tool

In an even weaker way, sets occur virtualy as only alinguistic tool where some
A
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predicates are replaced by their extension. For instance, to avoid repeating the
clumsy predicate “n times differentiable”, one introduces the st C™ of n times
differentiable functions and expresses “f is n times differentiable” by f € C”.
A more recent acquisition is the conventional set symbols N, Z, Q, R, C,which
replace the predicates “ ... is a natural, integral, rational, real, complex number”,
respectively.

A certain operation on sets (though important as such — namely, forming
the power st 2(4) of A (that is, the set of subsets of A) — functions purely as
a linguigtic tool if the fact C C A (Cis a subset of A) is expressed by C€ 2(4),
or the fact that Q is a set of subsets of A is expressed by 2 € 2(4) or even
by @ € P(P(4)). Sometimes the empty st occurs as a purely linguigtic toal;
for instance, if the non-existence of solutions of a certain equation is expressed
by the emptiness of the set of solutions. Interpreting a mapping from A to B
or a reation from A to B as a subset of the product 4 X Bis dso a purely
linguistic use of a st theory operation (the set theory product). A more essential
use of set theory language will be dealt with later.

34. Sets in Topology

Operating genuindy and explicitly with sets happened first in topologica
contexts. Not with the substrata of limits and convergence that are sequences
and series rather than sets; nor even in the case of the maximum of a function
was the sat of its vaues origindly made explicit. This changed when the need
was felt to use and to define the upper bound of a function (or functional) that
has no maximum — a phenomenon important in history because of Dirichlet’'s
principle. In this case the formulation is indeed easier if the set of values is made
explicit. A smilar case: in order to prove that a continuous function vanishes
somewhere in the interval between anegative and a positive value, one conceives
the sat of points where the function is not positive, and then takes the upper
bound of this set. Upper bounds, lower bounds, upper limits, lower limits, and
accumulation points are indeed an opportunity to explicitly introduce sets and
to operate with them. In real and complex function theory the need is felt to
consider open and closed sets, interior points and boundaries of sets — the
drawings illustrating such concepts reinforce the st theory context. In “st
theory topology” the adjective expressively indicates this context, athough in
“agebraic topology” it isno less influential.

35. Measures

Area, volume, and measure are functions on sets which, as it happens, can cdl
for explicit sets on which they are defined. As long as it is smple “figures’ to
which an area or volume is to be ascribed, there is no urgent need for making the
underlying set explicit; even the part of the plane delimited by the “horizontal”
axis, a function graph, and two ordinates, whose area is expressed by an integral,
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need not be explicitly described as a set. The need redlly arises as soon asaress
and volumes are to be attached to more or less arbitrary sets, that isin measure
theory. Here algebra of sets becomes operational: unions and intersections (not
only finite ones) and complements. Measures, that is, functions on sets with
certain additivity properties, are an important organising tool for many mathe-
matical phenomena. Probability is one of them.

3.6—7. Solution Setsfor Conditions

3.6. Traditionad geometry knew an explicit procedure for introducing sets as
solution sets for conditions. Instead of sets one called them loci — the circle
with centre M and radius r is the locus of the points a distance r from M.
Among the set theory operations the intersection played an important part,
aisng from the combination of two or more conditions.

3.7. Considering within some structure the sets of elements maintaining a
certain relation with agiven element is an important principle in algebra, too.
The multiples of 4 in Z form a subset: the set of numbers divisible by 4. The
intersection of multiples of 4 and multiples of 6 is the set of multiples of 12 —
a connection between intersection and least common multiple.

In agebraic structures one often focuses on subsets dosed with respect to
some operations. A set theory pattern, which istypical, may be illustrated by an
example taken from group theory: Let G be a group and A a subset of G; one
asks for the subgroup of G generated by A, that is, the group obtained construc-
tively by starting from A and applying over and over the operations of product
and inverse. However, the subgroup of G generated by A can dso be obtained
in one blow: defining it as the smalest subgroup of G containing A, or in ill
another way as the intersection of dl subgroups of G containing A. The same
pattern works similarly in rings, fields and smilar algebraic structures.

We meet with sets when consdering divishility properties. The multiples
of a given element a in a commutative ring R form the (principal) ideal generated
by a. Starting with aset A in R and forming dl linear combinations of elements
of A with coefficients from R, one gets the ideal generated by A. Ideds | inR
are characterised as non-empty sets of R with the property: a, b EIAcER —>
a—-be&lncacl The ided generated by A inR is the smalest ideal of R
containing A, or otherwise, the intersection of dl idedls of R containing A. In
Z every ided is a principal idedl; this is equivalent to the exigtence of a grestest
common divisor of a subset A of Z. For instance, the ided of Z generated by
by 4 and 6 is dso generated by their greatest common divisor 2. Ideds have
been invented and the theory of ideals has been developed to master divisibility
in such rings where the existence of the greatest common divisor is not assured,
that is, where not every idedl is a principa idedl. Ideals werein history the first
explicit occurrence of sets and set theory methodsin algebra
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3.8. Zorn'sLemma

Applying set theory in advanced mathematics, as mustered up to this point, is
light or even very light guns. The heaviest — and then downright heavy — is
Zorn's Lemma. Its use is in eiminating the transfinite ordinas of olden times,
and the way to prove it is smilar to that of formerly providing a set with awell-
ordering. Zorn's Lemmaruns as follows:

Let £2 be a non-empty set of sets (partialy) ordered in the natural way, that
is, by means of inclusion. A chain ® is a subset of € such that for each pair
A, B € ® we have either 4 C B or B C A (thus a chain is totally ordered).
Suppose that the union of each of its chains dso belongsto 2.( isclosed with
respect to formingunions of chains) Then — Zorn's Lemmaasserts — ) possesses
maximal el ements, that iselements X € Q suchthatif X C Ythen X =Y, for
every YEQ.

By means of Zorn's Lemma one can prove, for instance, that each group G
possesses maximal proper subgroups. Let ¢ € G not be the unit dement of G;
take for £2 the sat of dl subgroups of G that exclude a. Let ® beachanin £2;
then the union of © is obvioudy a subgroup* that excludesa, and thus belongs
to £2, which shows that the condition of Zorn's Lemmais fulfilled. According to
Zom's Lemma £ possesses a maxima element, which is a maximal proper
subgroup of G.

This proof is characterigtic of applications of Zorn's Lemma. A concept from
this complex of ideas that is crucial in modern algebra and anaysis is that of
filter:

Let R be asat. A filter F of R is a s&t of subsats of R with the properties:

the empty st is not a member of F,
AEFABEF->ANBEF,ad
AEFANACC~CEF.

By means of Zorn's Lemma one shows that each filter of R is contained in a
maximal filter, different from R (dso named an ultrafilter).

If 2 € R then there is one maximd filter of R containing the one-eement
st {a, namely the st of al sats of which ais an element. But otherwise as
soon as R is infinite, maximal filters are amost pathological objects, beyond
intuition and construction: each maxima filter F of R possesses the perplexing

property:

foreeachA CR ¢ethe A€EF o R\AEF.

* Indeed: If x, y € UgceH thenx € Hy, y € H, for cetainHy, Hy € ©; NOWH, C H,
or H, C Hy, and in the fust cae x, y € H,, thusx~ly € H,, thus x-ly € UpgegH, and
smilarly in the second case This line of reasoning is characteristic of applications of Zorn's
Lemma
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39. Cardinality

All s=ts occurring in the applications shown hitherto had some structure, which
was at stake in the set theory operations performed on them. This is dso true
of Zorn's Lemma. Indeed, 2 was a st of sets and by this very fact bears the
structure of pairs of member sets being part of each other.

The absolutely unstructured set gtill possesses one characteristic: cardinality.
Sets that can be mapped one-to-one upon each other have by definition the
same cardinality, and if A can be mapped one-to-one into but not onto B, A is
by definition of smaler cardinality than B. This then operationaly defines
cardinality and order in cardinalities. After this definition, it does not matter
much whether cardindlities themsdlves are introduced as mathematical objects.
In fact, it can be done by putting sets “having the same cardinality” into one
“class’, which is named their cardinality.

Frg of dl, cardinality should be appreciated as a historica-philosophica
phenomenon: the courage to extend an elementary concept like number, which
apparently needs no analyss, to infinite sets and to defy the seeming paradox
that an infinite set can have the same cardinality as some true subset. Technicaly
viewed, cardinality appears to be important for five reasons:

Firstly, equal cardinality of sets and subsets can be exploited in a positive
Lense

Secondly, the countability of the sets of integer, rational, and even algebraic
numbers — at first sight unexpected — allows unexpected constructions in this
field.

Thirdly, the uncountability of R guarantees in a smple way the existence of
non-algebraic numbers and in a more general way that by the difference of
cardinality one st can be distinguished as a true extension of another.

Fourthly, the unexpected phenomenon that forming the product of an
infinite set by itself does not increase its cardindity and, as a consequence,
that line segment, square, cube, and 0 on have the same cardindlity, is the
source of the problem of how to distinguish dimensions, which has been solved
by paying attention to more structure, namely topologica structure.

Fifthly, the well-known drawer principle: if a set A is being mapped in a
st of lower cardinality, at least two elements of A have the same image.

3.10. SetsasaPurely Linguistic Phenomenon

The reader may ask why | have elaborated so much on the phenomenon of sets
in advanced mathematics, at the risk of supplying no more than verba informa-
tion. In fact what | did was not much more than to lift a tip of the magic vell
spread over set theory by innovators in the past, who claimed to have shown
that set theory, hitherto a privilege of advanced mathematics, could be success-
fully taught in primary school and even kindergarten. After the “back to basics’
reaction it is gtill or even more necessary to anadyse those pretentions because
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they are characteristic of an approach to designing mathematics education that
lacks any phenomenological background.

Set theory as meant by those innovators was quite another subject than is
meant in advanced mathematics. In today’s school mathematics sets are not an
organising device for mathematica (or non-mathematical) phenomena, but an
am in themselves. Intersection, union, complement, and power st are not
introduced when and where the subject matter asks for these organising devices.
Instead a subject matter has been created to exercise and train these operations.
It should be noticed that this is not an unusual way of creating school teaching
matter. Rather than developing set theory schemas as organising tools from
subject matter that asked for such organisng and schematising, empty boxes
are taught and, in order to appease one's didactical remorses, filled with (false)
concretisations. Sets originating this way aways remain within the palpably
concrete sphere or are purely linguistic phenomena. Collecting a finite number
of objects in a set, which as a mental object nobody has asked for, only in order
to apply set operations on it, is one aspect of this false concretisation. Another
is the so-cdled Venn diagram; a third, logica blocks. Later we will stress that
the proper problem with setsis to grasp and recognise them abstractly.

Set as a purely linguigtic phenomenon expresses itsdf in this kind of school
mathematics in particular by the cult of creating sets in extension. Every
predicate can be transformed into a set — indeed, the set of things sharing
the predicate. From “... is red” one can form the set of red things; from “...
hes long hair and wears spectacles’ the set of long-haired spectacle-wearers,
which in turn is the intersection of the long-haired people and the spectacle-
wearers. Or closer to mathematics: from “... is more than 7 or less than 3
one forms the set of the numbers more than 7 and less than 3, to be represented
as the union of the sat of numbers> 7 and the set of numbers< 3. Or “divisor”
can be transformed into the set of pairs T, ' such that x is a divisor of y. In
advanced mathematics sets are created in extension where they are needed. In
the kind of school mathematics we have in view, sets are training matter, and
what is trained are things to which only side attention is paid in advanced
mathematics. Consider the pardlelism between logical and set theory operations.

to~ (and) corresponds N (intersection),
tov (or) corresponds U (union),
to 7 (not) corresponds R\ . . .(complement).

The lagt line exhibits what is wrong with this parallelism; in order to have
“not” correspond to complementation, one must know with respect to which
domain the complement has to be taken. Here | indicated it by R. In generd it
is known under various names. basc set, universe, choice set, reference .
It is a conception occurring in school mathematics only;in normal mathematics
it is entirely unknown and this for more profound reasons than the difficulty
with the negation.

True mathematics is a meaningful activity in an open domain, rather than
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a haphazard one in an a priori fixed reference set. 1 admit that in st theory
axiomatics, it is postulated that from every object one can make a one-member
set, that for every set of sets the union exidts, that every set has its power set,
and that every predicate hasits extension. In the school mathematics | sketched,
one feels obliged to exert onesdf to redise dl these possbilities. But in true
mathematics there is not the dightest need for, say, the union of the sgt of
natural numbers that are divisible by three and not the power of a prime number,
with the st of finite subsets of a three-dimensiond vector space, with the st
of al sunsets. Sets are formed and used where they are needed.

With regard to the paraldism of logicd and st theory operations, | would
not exclude the need — at a certain moment — to illustrate an equivalence like

A(pAg)<—Tip Vv g,
or perhaps even
evarr—=@Ernv@nr,

by its s&t theory counterpart. As soon as these logica equivalences provide for
real wants, nobody will raise objections. Even then, exaggerations and wrong
concretisations should be avoided. By wrong concretisations | mean concretising
the corresponding sat theory equalities

R\(4 N B) = (R\A) U (R\B)
(AUB)NC=(ANC)UBNC)

dogmatically by means of Venn diagrams rather than by rectangular partitions

B R\B
A ANB A N (R\B)
R\A (RN\A)n B (R\A) N (R\B)
Fig. 1.
A B
c R
v
Fig. 2.

(Figures 1 and 2). It is pedantry to go further if there is no reason for it, and
in particular trying to extend this pardldism to “—’and “C” — suchisthe
whole ritual of sets as a purely linguistic phenomenon.
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311 The Good Reference Set

A few lines above | stated: “True mathematics is a meaningful activity in an
open domain, rather than a haphazard one in an a priori fixed reference set.”
Curriculum developers and textbook authors apparently believe they offer
teachers and pupils firm ground under their feet as soon asthey restrict mathe-
matical activities to a fixed reference set. This, they think, prevents possible
surprises that might be disappointing. Fixed reference sets have been a source of
confusion — in particular in probability (which we are obliged to anticipate

here) — and have provided rather than firm ground under the feet, a swamp of

contradictions. In traditional probability, one can dso learn what should redly
be done if reference sets are tried, and this | will explain here.

Take a die. The Sx possble results of a throw form such a reference set R
Related propositions are of this kind: the result x of a throw is even, oris <3,
or is > 6. Such propositions determine subsets of R; these subsets form a “Borel
system”, where one can play set theory algebra and form unions, intersections,
complements.

Yet this reference set is not of any rea importance. In fact, one promptly
pases to conddering throws with 2,3, ... , n dice, or rolls of one die rolled
2,3, ..., ntimes, or together with the die a coin showing head or tails, and s0
on. This requires forming ever and ever new reference sets, arising from the old
ones by forming products; that is, products of different sets, powers of the
same, and products with a finite (or even an infinite) number of factors. One
lives, as it were, with an open reference set which a any moment, if need be,
can be enriched by adding new factors or impoverished by neglecting factors.
A colloguium lecture on a probability theme may start with the announcement
that the lecturer supposes the reference set (more precisely the probability
field) so large that every stochastic variable he will introduce is meaningful if
conceived as a function on this set. It isjust by means of stochastic variables that
the probabilist can bring any reference s&t he means to the fore. For ingtance,
the result of the nth throw of a certain die is considered a stochasticvariable x,,
defined on a probability field, which has among its factors at least the nth throw
of that die though it can have many more factors.

It is a point of view that works very well wherever reference sets are at stake.
Let usillustrate this. Consider the following two reference sets:

R, the st of flowers with predicates like
...isred,... ismulticolored,... istal,

R,, the st of animals with predicates like
...isamammal,... livesin Africa,... isextinct.

As s00n as both are to be placed within the same context, the correct reference
is not obtained by throwing R, and R, on one heap but by forming their
product
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R= m],Rz_l.

In thisway any proposition p on R, can be considered as one on R, which is not
influenced by the second component; smilarly any proposition g on R, canbe
considered as one on R, which is not influenced by the first component. By this
interpretation any proposition

x€4
about R, (D A)isjacked up to a propostion
x, y'€TA, R,
and any proposition
YEB
about R, (D B) to a proposition
x,y1eiR,, Bl
Thepropostion
the flower is red
on flowers isjacked up to a proposition on
lflowers, animals
by tating that
in the pair flower, animal® the flower is red,
which of course is equivaent to
the flower is red,

and this means that we can digoense with the more complicated form and even
need not introduce it.

In order to make the connection between prepositiond logic and sat algebra,
indicated in Section 3.10, we have only to ensure that dl propositions under
future consideration (or al predicates) dea with the same set of objects — that
is, for the predicates, have the same domain. This is achieved by means of the
product of the domains of al propositions occurring in the context, jacking
up — at least in theory — each proposition to one about the new domain, the
reference sat of the given context. Extending the context involves enriching the
reference set by new factors. Redricting the context means omitting factors
of the reference set; that is, projecting it on a poorer one, with a restricted
system of factors.

Rather than an organisation of mathematics, the present explanation organises
a system of propositions on redlity by mathematical means, in particular, by s&t
theory. It is less rdevant for mathematics than it is for reating mathematics
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to its applications. The most embracing reference set which, starting from reality,
can come under condideration might be dubbed: world. In this sense “world”
is neither a sat of space and time points, nor a set of objects in space-time,
nor any physcal datum whatever, but the reference set of the context dedling
with redity. “World” is the product of an awful number of factors such as
“flowers’, “animas’, “colours’, “throws of coins’, “throws of dice’, “mo-
ments’, “points’, “persons’, “feelings’, “thoughts’, and whatever one may
think of.
If | pronounce some proposition such as

the flower is red,
the animdl lives in Africa,
the die shows a six,

| occupy myself with one factor, one facet of the “world”, while disregarding
the others. If | pronounce the three of them together, | am grasping more of the
“world”. Yet thisis dtill a small reference set. Redlistic contexts require amuch
broader reference set — actually but also potentially by their openness, by the
potentiality of extending.

The reason why this phenomenologica analysis is less relevant for mathe-
matics than for applications (for instance, probability, where it originated) is
to be found in the peculiarities that distinguish mathematical language from
the vernacular, in which applications are usudly formulated. | shdl return to
these peculiarities, but | will anticipate the most essential one: The variables
of mathematical language are omnivalent in principle; letters can indicate any-
thing, whereas any restriction of domain must be made explicit. Such variables
are rare in the vernacular — the variable “something” is akin to mathematical
variables. Domains of variables in the vernacular are most often extremdy
restricted; “flower” can be applied only to flowers, “now” only to moments.
Yet this dso offers us an advantage: the linguistic symbol promptly displays the
reference s, the facet of the “world”, to which it is restricted, and by this
fact doubts about the reference set of a context are virtually excluded. It is the
same sStuation which we meet with sochadtic variables, which are not variables
in the usua mathematical sense. If | denote the result of the next throw with a
dieby x , then the proposition

x=3
has a different meaning from
x=3

in a mathematical context. In a mathematical context the variable x must be
bound in some way in order to occur in a proposition, but regarding the proposi-
tion x = 3 1 can directly pronounce judgments such as “... is true” or “...
has the probability < "
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3.12. Elementary Sructures

From a didactica phenomenologica point of view implicit and explicit uses of
sets are to be distinguished. As a matter of fact for menta objects to function
well it is not required and often not even beneficia that they are made explicit.
Thisis particularly important for the didactical phenomenology of sets as mental
objects because, unlike numbers and geometrical objects, the vernacular knows
no terms to indicate sats in genera. Nevertheess sets as substrata of structure
must play a role early in cognitive development even though they are neither
recognised nor isolated.

Sdts, as they emerge in spontaneous development, are heavily structured.
This is not surprising. Attention is more strongly attached to structures than to
what lacks structure, and the inclination towards structuring that which lacks
structure dominates that of destructuring structure, at least as far as building
rather than destroying activities are concerned.

As examples | shdl indicate such structures. First, the structure of succession
or file, placing objects besides or behind each other, for instance to make trains
for riding or putting blocks upon each other, perhaps according to size. Or
the same in a rhythmic-acoustic or rhythmic-gymnastic way, combined or not
with files of solid objects. Counting in the early meaningless manner — or in
awrong sequence — shows the same pattern. Creating from a given file a new
one by regular skipping (for instance when jumping in a tile pattern) is a more
sophisticated way of structuring, &s is the regular inserting of new eements
into afile.

By being provided with periodicities (have beads of different colour regularly
dternating in a string), the file is transformed into a repetition structure. With
repetition structures one can didactically distinguish: passive recognising, imitat-
ing, and describing. Repetition structures are developed not only linearly but
aso in the plane and the space — it would be of interest to know in which stage
the potentia infinity of the repetition structure becomes conscious. Akin to
the repetition structure is the cyclic structure, arranging objects cyclically —
persons around a table or a centre or the mental structures of the day, week and
year cycle.

More topologica structures are: the detour structure (the child makes a
detour after which it meets the adult guide again), the border structure (walking
on borders), the enclosure structure (a true or symbolic enclosure of onesdf
or somebody €lse by means of drawn or otherwise marked enclosures), the
barrier structure (blocking the path with the arms stretched), the hide-and-seek
structure, the look-around-the-corner structure, the labyrinth structure, the
idand structure (objects are declared to be idands within a surrounding sed).

This ligt of generd structures can be complemented by more or less specidised
ones. the box with blocks that cannot be packed arbitrarily, the puzzle that
must be composad in a definite manner (that is, where the parts are mutually
closdly related); the family in general, or in varying redisations, structured
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according to generations, sexes, kinship, the content of the toy-cupboard,
structured with respect to a lot of relations, the seating accommodation in a
car or bus, a pack of cards.

In appropriate places | will reconsider these structures, which can be processed
into a wealth or didactical material. The enumeration was meant only to evoke
an idea of how strongly the early cognitive possesson is dominated by structures.
Sets as substrata of these structures arein afew cases easily recognised, in other
casss it is harder or even difficult. | mean: for the author and his readers. Does
the child notice the substratum set? One should ask rather whether it would
be relevant to him.

3.12a Order Structures

As far as elementary structures are concerned, those that lend themselves at the
earliest stage to mathematising seem to be the order structures — linear and
cyclicd order (with partiad orders as a rather deranging phenomenon). They,
too, are obtained from richer structures by impoverishing — in a particularly
effective way. At the start this richer material is of a quite concrete character,
that is, felt by hands, feet, senses. Ina developmentd linethe first order relations
might be

gpatia inclusion,
Spatia succession.

Where
temporal successon

is to be placed is not easy to say. Everybody knows the difficulties that many
— though not all — little children have with “yesterday” and “tomorrow”: they
use the same word for both of them, and as by preference, it seems, “tomorrow”.
What is wrong here? The mental grasp of the time direction, the idea of some-
thing like a future that in fact is (dill) non-existent? Is the preference for
“tomorrow” to be explained by the greater frequency of the word?

Daphne (3; 8) gets a number of sweets. Mother says: “This we will keep for tomorrow.”
Daphne: “And this for yesterday, and that for Thursday”. Mother: “Thursday is today,
is't it?” Daphne: “Then for Friday”.

Order relations are expressed in
comparing spatial and temporal dimensions and quantities,
characterised by comparatives such as
longer, shorter, thicker, higher, older, more, fuller, and o on,
by prepositions such as

in front of, behind, after, between, and so on,
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by adverbs such as
first, then, more, less, and 0 on.

— 1 would not be able to say in which succession. Farther away, though perhaps
only partialy, is

comparing intensities
by means of
heavier*, hotter, sweeter, dearer, nicer, and 0 on.
Order relations are

perceived,

stated,

actively imitated,

created,
for instance, if the child follows a prescribed path, from one stone or step to
the next, or if, more or less conscioudy he chooses his path, jumping from one
stone to another in the neighborhood, climbing from one branch to the next.

Much concrete material — paths, stairs, strings, straight and crooked linear

objects, nests of objects — suggest, a

globa order — that is, comparing totally,

though under less concrete circumstances — with temporal or intensive criteria
— this globa suggestion can be lacking. Whereasin the first case the global order
is

accepted and — at most —analysed afterwards,
it happensin the other cases that the global order is

synthesised from the loca one by pairwise comparison.
Thelink between loca and globd order then is

trangitivity
— two loca mutual situations when combined yield a third, which is mathe-
matised by

a<bArb<c—a<ec

Trangitivity, if not imposed by definition, is an empirica feature. Cognitively
viewed, the complex of order relations as it develops itself is a complex of
justified — and sometimes unjustified — analogies, linguistically supported by
comparatives and superlatives such as

* Developmentally “weight” startsasanintension.
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big, bigger, bigges,
swest, sweeter, sweetest,
much, more, most,

and so on. Putting moments, weights, intensities, and o on, on a number line
may arouse the suggestion of globd linear order.
Necessary — and perhaps even sufficient — for the constitution of

one mental object “ordered set”
seemsto me the

operational mastery of transitivity*
and the

operationd inverting of order.

Necessary for the constitution of

the mental object “linear order”
seems to methe

operational mastery of endo- and isomorphisms of orders
and the

rejection of only partial, asit were, total order.

Our exposition has increasingly focused on linear order. A priori

cyclic orders
are

globaly
given;

spatialy

—around the block, around the tree, the closed string of beads—
temporally

—the day cycle, the week cycle, the merry-go-round, continued repetitions. A
restricted grip on the globa character is within the scope of the mental object
possible by means of

locd andysis

* Posshly as early as the age of four, as shown by P. Bryant, contradicting Fiaget. See
Chapter 1.14.
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— an ordered triple determines the difference between a cyclic order and its
converse

— neighborhood relations determine the cyclic order,

but formalising

what corresponds to transitivity

is far away in the conceptual domain of cyclic order.* However, for constituting
cyclic order as amental object, the

operational mastery of endo- and isomorphisms, and
operationaly inverting

look even more important than in the case of the linear order.
In the planar geometrica context the cydlic order is enriched by

right and left turn,

which will be considered a appropriate places**

3.13. TheElimination of Sructure

Recognising the substratum set requires thinking away the structure based on
it. This can be quite difficult if the structure has arisen from anatural order or
topology as is the case with most of the examples of genera structures. It
may be easier, though ill difficult, with structures generated by classification.
The coloursin asupply of beads are more eesly thought away than the structure
of the human family. It is eesiest when the elements are not, or hardly, distin-
guished from each other, and unrelated (chips of the same kind, a flock of
sheep, the reverse side of a pack of cards) or — another extreme — if the whole
looks like a hotchpotch, which does not invite structuring.

Didacticians who undertook to make children familiar with explicit sets have,
as it appears, struggled with the problem of how to diminate structure in order
to evoke the suggestion of an unstructured set. The most natural method —
indistinguishable objects — has been the least common, probably because of a
wrong concretisation of the requirement “that the eements of a s&t should be
different”. The most usual paradigm of the bare unstructured st is the hotch-
potch — the elements are being put into a Venn diagram or between braces in
such a way as to kill any suggestion of order, higgledy-piggledy, and if they
are numbers or letters, criss-crossed in the diagram, and in a chaotic order
between the braces. All that could be experienced by the child as order, is set
at defiance — the order in the family where every member knows his place
at table, has his own bed to deep in, the order in the tidy toy-cupboard, in the
flower garden — so as to evoke the set deprived of any structure. It is suggested

* Cp. Mathematics as an Educational Task, p. 472 9.
** Sections 10.3 and 14.12-16.
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that as soon as objects figure as elements of a set, they are freely movable in
space — an ontology based on a wrong phenomenology. Indeed, in the great
majority of casss the elements of sats are mental objects, and as soon as point
sets are discussed, the pupil is asked to relearn what he has been taught to
unlearn: that for the individual elements of point sets the only thing that matters
isthe place.

In spite of the chaotic order in the Venn diagram or between the brackets,
the suggestion that the place does not matter is ill not strong enough. On the
contrary, teacher and pupil must explicitly be informed about it, as they must
about the possibility that — contrary to the verbal suggestion — a set is allowed
to consst of one or even of no element. Why is it alowed? By prescription,
snce this is the only way to introduce such objects as one-dement sets and the
empty s&t aslong as there is no need for them.

The didactical means by which children are forced to constitute structureless
sets are kill or cure medicine, like the horse-drench. It is impossible to check
whether and how they function, because in fact the congtitution of the mental
object is skipped and replaced by a verbalism that does not cover any menta
object. These verbal products are afterwards subjected to purely linguistic
operations, as demonstrated earlier.

3.14-16. Equality

3.14. The approach through blinkers is the mogt disturbing feature of these
horse cures. If sets are to be congtituted close to redlity a broader context is
required. “Close to reality” does not mean Venn diagrams of pictures, but
aliving context.

School texts often explain: A st is determined if for each object it is known
whether it is dement of the st or not. This is mideading. If it were literaly
true, | would not be able to speak of sets of natural numbers without precisely
enumerating al their elements. It is as mideading as the suggestion that in order
to become elements of a set, objects must be stripped of their position.

The decisive feature, however, is what equality means in the case of sets. In
order to speak about sets, one must know criteria of equality. Do two pictures
represent the same family? Does this picture represent the family across the
Street? Are these the same marbles that were here last week and that are now in
the bag? Do A and B have the same sorts of trees in their gardens? (Notice that
rather than — concrete — trees, | said sorts.) Do A and B have the same school
marks?

Of course, in order to answer such questions a broader context is required.
We should first know something about the pairwise equality of the dements
belonging to such sets, that is, know what equality means with smple objects.
Afterwards we can look for the compaosition of the sets in question.

By “broader context” | mean formally the ontologica question of what is
equality, that is, criteriaingeneral, not necessarily restricted to sets. Not absolute
criteria, but criteria determined by the context itself. Asacontext | now choose,
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as regards subject matter, doseness to redlity, and as regards didactics, young
children. 1 am going to sketch a broad theme.

3.15. Imagine a number of pictures of the same church building, taken from
different directions, under different angles, perhaps one before the restoration,
one with scaffolding, one after the restoration. Is it the same church? — a
question which can be discussed, affirmed, and denied. The result does not
matter. What realy matters is the insight that criteria are required to answer
such questions and that there is nobody to offer you the criteria

In such a discusson analogies will be cited as arguments. A manin different
clothing, with one tooth more or less, a woman who got a different name by
marriage, a mother-to-be with a child in her belly — are they different persons?
“] feel anew man”, “Saul became Paul”, “the saltpillar called Lot's wife” —
themes of endless discussions.

The most likely fina result is. The church building is continudly the same,
but “the church building previous to restoration”, “the church building under
restoration”, and “the church building after restoration” are different things.
Mathematically formalised: From C (the church building) and t (time) we get
the pair 'C, 7', thus besides the object C we have new objects 'C, ¢3!, 'C, ¢,
C, ¢3! — all different. In a similar way the other examples can be dealt with:
the church building according to different aspects, Saul-Paul before and after
Damascus, and so on.

If the church building, or Paul, is considered to be a smple (not composite)
object, then the church building previous to, during, and after restoration,
Paul before and after Damascus, are composite (mental) objects. The way of
composing, however, by mental par formation, of course differs from that of
composing a family, a construction box, ajigsaw puzzle, the seating accommoda-
tion in a bus or car, a pack of cards. Composing in the latter sense is how sets
are composed of elements. Of course, as was stressed earlier, in al such examples,
in order to get to the substratum sets, the structure has to be eliminated, which
is not aways easy. Sometimes this can be done by means of criteria of equdity.
The family remains unchanged when its members move, the congtruction box
and the jigsaw puzzle are the same however their parts are arranged (though
the orderly packed state can be consdered as a goecid object), the pack of
cards is not changed by shuffling; the seating accommodation in the bus is the
same whether occupied or not.

Yet dl these examples show much more structure, which cannot be done
away with by these operations. Family, construction box, puzzle, quartet game,
seating accommodation keep their individuality not only as sets but ds as
structures (unless parts get lost or are changed).

Let me illustrate this equality of structure by another example. Take a
ludo board* such as you can buy in a shop — a quite simple structure with a

* A cydlic arrangement of squares with four entrances on which four gamblers move their
men according to certain rules.
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set of sguares as set substratum. Take a second specimen, exactly congruent. Is
it the same object? No, not as a concrete ludo board. But you can consider both
of them as pictures of the same — abstract — ludo board. As a matter of fact,

the boards may even be of different manufacture, of different size, in other

colours and nevertheless serve as images of the same object. (If by chance they
have different numbers of squares, one should consequently distinguish ludo

games with different numbers of squares, as with the game of draughts, where
there is the international and the Polish-German variant.) The concrete boards
appear as pictures of the mental board in the same way as you can make various
snapshots of a family or consider a construction box, a puzzle, apack of cards,
the seating accommodation in abus as an abstract pattern, which can be redised
in various — congruent or non-congruent — ways. The term “picture” which |

used, evokes the idea of a two-dimensional image, while other examples suggest
visua or instrumental realisations, but reciting the same poem in various ways or

singing a song can adso be interpreted as a picture of a more abstract object. A
more comprehensive term than picture would be model* — the concretisations
are models of the same abstract structure.

The structure of the ludo board is what is caled in mathematics a directed
graph. The square fields can be thought of as being replaced by their centres
(the nodes of the graph) and neighboring ones connected by arrows in the
direction they are passed through in the course of the game. Thisis asimplified
topological image of the usua ludo board. In the background there is an even
more abstract structure, lacking any geometric appeal: the sat P of nodes and
on it the specid relation R(x, y) (there is an arrow from x toy). However, the
st substratum can dso be chosen differently: aong with the set P one considers
the set Q of arrows, while adding the relations R, (x, y) (node x is the tail of
arrow y) and R;(x, y) (node x is the point of arrow y). Choosing the s&t sub-
stratum of a structure is a matter of taste and practice.

| should add that | have andysed the structure of the ludo board only, not
that of the game, which is much more involved. Then a st of pawns should be
added, a concept of position — which is a relation between nodes and pawns
—, arule asto how a position can change into another, data on the starting
position and a rule on the consequences of a final position. Here | have retricted
mysdlf to the ludo board.

| will now reconsder the other examples of Structures. Firgt of dl, the
family, or rather a particular family, say, of two adults, father and mother, three
children, boy, girl, boy. This structure looks more variegated than that of the
ludo board. Thereisalinear order onit according to age, there are classifications
according to generations and sex, and there is a genedlogy. Another structure
is the family, of which the particular families are models. It must dlow for more

* As explained in Weeding and Sowing (p. 130 s1.) this is one of the diametrically opposed
meanings of “model”, that is &s after-image. Model aspre-image wouldjust be the abstract
ludo board, the abstract construction box, after which the concrete ones have been manu-
factured, or the poem or song on paper as conceived in the author’s mind.
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than two generations, for more complex and disconnected genedogies. The
structure of the construction box is determined by classes of geometric shapes,
perhaps dso by functional classes. The jigsaw puzzle reminds one of a graph —
representing the particular pieces by means of nodes and neighborhood by
means of joining line segments — although such a structure would be too rough
to dlow one to reconstruct the puzzle from the graph, which does not determine
the jigsaw puzzle structure sharply enough. The true structure is the geometric
divison of the rectangular point set according to thejigsaw pieces. If | focus on
this structure, | only neglect what is stuck or painted on the pieces.

3.16. When the s&t theory frenzy reached the Netherlands, it was the stamp
collection that was raised to the rank of a paradigm for sets — indeed, the plain
meaning of the Dutch word for st is collection. So one could even argue why
al elements of a set should be different: a serious philatelist does not insert
more than one specimen of a postage stamp into his collection. Following this
argument the 50-cent stamps in stock at midnight on 1 August, 1975 at the
Utrecht Central Post Office would not constitute a set.

One can distinguish — at least — two different concepts of postage stamp: the
concrete printed and gummed piece of paper, and the sort of which this piece
of paper is a specimen. (Different philatelists may adhere to different notions
of sort; some of them know more sophisticated sorts than do others, but this
does not matter here.)

What then is a stamp collection? The set of printed pieces of paper? Yes and
no. The collection of philatdlist X grows, is transformed by exchange, but does
not change its identity. Well, this isnot a new point of view; we can account for
it by spesking of X's collection a time t. Is this really the set | mean? If in this
st | replace the specimen of a certain sort actually or mentally by another of
the same sort, it remains the same stamp collection athough the s&t has changed.

The philatelist does not collect pieces of paper but sorts. He does not collect
0 as to own a sort. The stamp collection is not a set of sorts. In astamp collec-
tion sorts are represented by specimens — not all sorts are represented and
perhaps some sorts are represented by more than one specimen.

In the gardens of A and B are the same sorts of trees —we met this example
earlier. In dl Y-Z bookshops you can buy the same books, a dl M—-Nice cream
stands you can buy the same ice creams, the countries P and Q have the same
fauna. Of course, a book as a concrete object can st in one bookshop only,
two ice creams are never the same, and one lion is not another.

The concept that fits these Situations is assortment rather than set, the same
assortment of stamps, trees, books, ice creams, animals, respectively. One
considers the set © of dl stamps, trees, books, ice creams, animals, respectively.
This set is divided into sorts, which form aset £. An assortment is a set of sorts,
asubset of =,

It seems a rather weak concept: such an assortment could be empty, indeed.
In itself, such an assortment is poor: a set with a bit of structure — its elements
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being sorts. In the stamp collection case it is no more than aligt of the respective
sorts. However, this set bears astrong external structure by its relatedness to the
st Q of dl stamps and the various stamp collections of the other philatelists.
The assortment gets its significance from the fact that it is an assortment of the
st ©, partitioned into sorts. In this way it becomes meaningful to ask whether
two philatelists share the same assortment of stamps (although their collections
are separate), or whether the one is larger than the other, or whether they
overlap, or have nothing in common (different countries or ages).

Consequently, a stamp collection is a set (of pieces of paper) plus an assort-
ment; the set is, as it were, externally structured. A group or alinear space can
be studied in itself. On the other hand, one can stress the relations of the group,
or the linear space with others. Then one acts in what is cdled the category of
groups or linear spaces; there the externa structure of the particular group or
space expresses itsdf by the so-cdled morphisms of the category.

3.17. Sructures as Mental Objects

Except in artificial examples and exercises, sets are usualy endowed with, and
are dependent on, structures and can be grasped through these structures only.
As a substratum a set becomes explicit if the structure is recognised and con-
stioudy eliminated. This has been the meaning of the preceding discussion. The
examples of structures we chose were taken from common experience. Artificia
ones need not be rejected provided one realises their deficiencies. Logic blocks,
for instance, suffer from four ills All is prestructured, structure is restricted to
classification, a closed (even finite) mathematical universe is mirrored in order
to exercise st algebra, and finaly, dl relevant predicates always determine one
unique element together. These four ills are the expression of a systematism
that, like unfortunately al systematisms, attracts didacticians of mathematics.
(Of course, reasonably applied, logic blocks may be auseful tool.)

Recognition of structures and — through the structures — of substratum sets
is a schematising abstraction, which in the didactical process deserves concrete
support, though not so strong a support as is supplied by logic blocks. One is
better advised to draw picturesthat reflect structures and substrata schematicaly,
for instance, aong with the ludo board the schematising graph. For classifying
according to one characteristic, the most suggestive picture is the set of bags
(Figure 3) and in the case of double classfications two sets of crossing bags
(Figure 4). A pack of cardsis schematised as the product of

{2,3,4,5,6,7,8,9,10,J,0,K A}
and

{CH,SD}.
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There are many ways to represent assortments schematically: by means of a
check ligt, by a schematic page of a stamp abum where some places are filled
in and others are not, by a page of astamp catalogue with some items checked.
Yet with al these representations the set € remainsin limbo. In order to remedy
this defect one can combine these pictures with that of the classification.

We will encounter more of this kind of schema. Again we stress that they
do not concretise concepts — as do Venn diagrams — but are derived from real
structures by schematising abstractions and have to serve for constituting mental
objects. Whether and how fast and by which stages one passes to constituting
concepts is another question. Stages would be characterised by their verba
machinery. One can restrict onesdf to simply introducing words like “set”,
“group”, “ordered set”, “graph”, “directed graph” for this or that, in the way
one gpesks about numbers and addition, one can denote particular structures
by letters, and in formalising the notation of a structure one can even go o far
as to digtinguish formally the substratum and the structuring relation (such as
with an ordered st 8, <1). It depends on the level of formalising whether these
are pure names used to cal up objects or whether one intends to describe mental
operations with the objects by formal operations with their names. From tradi-
tiona arithmetic instruction one knows that formalising is possible a an early
age — the first formalised activity a child is taught is column arithmetic. It
is dso known that premature formalisms can be pernicious. One should profit
from these experiences in the didactical subject matter that is dealt with here;
introducing formal machinery only where it covers mental objects and where
it is required to describe and facilitate operations with these objects. With the
view on thisissue fixed, | will review afew set theory concepts.

3.18-3.20. NUMEROSITY AS A SET THEORY OBJECT

3.18. Constitution of Cardinal Numbers

At present | will not deal with the constitution of the cardina numbers; this
will be done in Chapter 4. Yet as far as constitution of sets and operations
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on sets are concerned, something must be anticipated. In the constitution of
numerosity (or cardinal number) | distinguish the following activities:

Eliminating from structures with the same substratum the structuring
component in order to arrive a substratum sets,

and in this connection transforming the inclusion relation into an order
relation (“less’ instead of “contained in”).

Using isomorphisms of structures with different substratum to compare
different sets.

Using transitivity of equality and order (of numerosity number).
Intentionally | did not add:
structure-free comparison of sets,

which by sat theory is, as it were, ordained for comparing cardinalities, but
as important as it might be at the level of concept formation it is irrelevant
and ineffective for the constitution of mental objects — which will be shown
immediately. Meanwhile | shdl soften this strong assertion. There is one excep-
tion: whether one set has many more elements than the other can be decided
with the naked eye (or ear), without structuringthe sets. There are early develop-
mental stages in which a short sequence of constituted smal numbers leads to
an indefinite “many” (which can be expressed verbaly by a definite numeral).
Then the development progresses by differentiating “many”. The menta con-
stitution of “many” could, at least partialy, be performed by a procedure of
structure-free comparison, and in this way structure-free comparing would
influence, via the motor of “many”, the development of numerosity as a mental
object.

| review the three activities which a the start of the present subsection |
pointed out as being essentid for the constitution of numerosity. In order
to clarify what | said, | review some well-known experiments: Two rows of
objects are laid down in such astructure (Figure 5) that by means of the greater

Fig. 5.

length of one row the larger number of objects in that row is made visble: the
isomorphism of one of the structures with a substructure of the other and
transitivity are ostensively used. Then the longer one is compressed to make
both of them equally long. Thus in order to maintain the order of numerosity,
one has to diminate the change of structure and again apply trandtivity. Such
experiments are considered by psychologists as tests of “ conservation”, they do
not, however, unveil the rock on which the so-caled non-conservers foundered.
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What these three activities mean for the congtitution of numerosity number
will be discussed later. At present we are concerned with the part played by sets
—implicitly or explicitly.

Of course, one may first ask: “do they redly play apart?’ As | have stressed
repeatedly,* numerals as cardinal numbers — indefinite ones included — are
a different linguistic category than adjectives: if | want to say about a football
team not that each of its members but the team itself is good, it is not enough
to say “eleven good football players’; | shdl rather attach the adjective “good”
to the object “eleven”: a good eleven, or a good team. Numerals, however, are
by their very essence related to collectives of things, the particular football
player cannot be “many” or “eeven”, but it should be; deven football players.
This collective, however, is not explicitly indicated as it is in the case of the
football team: the numerals stamp by their mere use the object they are attached
to as acollective.

Well, it is possible that in the first developmental stages the numerals — as
well as the non-verbalised mental numerosities — are concerned with structures
rather than with sets. At least with regards to the number 2, this is a quite
natural assumption. At an early stage the child's attention is drawn to natural
pairs. two eyes, two ears, two hands, the pair of parents, sun and moon, twins.
Is the “two” at this moment already mentally constituted or is it a new step
that the “two” is recognised in unstructured sets of two? Indeed, the pairs we
just cited are more or less strongly structured, the first three, in particular,
by “right and left”; but dso externaly structured because a union of pairs of
eyes, and so on, displays a natural classification structure which extends to the
pair of parents; “sun and moon” show a clear internal structure; in the case of
the (“identical”) twins it is weak or absent.

Natural triples are less conspicuous, natural quadruples, however, are, for
example the legs of many animals, and tables, the wheels of cars — strong
internal structures in the first and third cases, and externa ones in dl of them.
Natural quintuples, such as the fingers of the hand, are imposed explicitly on
the child as means of congtitution of a number. This imposition may not be
too successful, as a consequence of the strong structure of the system of fingers,
stressed by nursery rhymes, and impeding rather than favouring the constitution
of number: it is aways the same triple or quadruple of fingers that is lifted if
children accompany the answer to the question of their age by this obligatory
gesture.

Structures may impede the constitution of number but they are dso, as
seems to me, indispensable in instigating this process. | repeat the red currants
story:

At the rectangular table Bastiaan (4 ; 3) is seeted opposite his younger sister, father opposite
mother, grandpa opposite grandma. At the dessert of red currants he suddenly lifts his little
spoon in the greatest agitation and ejaculates “So many are we!” Indeed they were six.

* For instance, Weedingand Sowing, p. 215 .
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| asked him: “Why?" and he answered “I see it s0”, and then “two children, two adults,
two grandpa and grandma’. Possibly the sx currants lay on the spoon in the same con-
figuration of six as we occupied around the table, but this | could not see. At that time
Bastiaan was dill quite unsure with numbers and obstinately refused to count. This event
distinctly marks in his development the constitution of numerosity numbers.

Thisis one of the observations that taught me how important for the develop-
ment of mental numerosities is the structured comparison of sets. Adults impose
a specia kind of structured comparison: by means of the ordered set of natural
numbers, N, used to count out a given set S, This asks for two remarks. On the
one hand, for comparing sets, N is not indispensable. Often, yet not aways,
N is useful as a mediator between sets that are to be compared. There are casss,
examples of which we shdl ded with later, where thanks to mutually related
structures on the sets that are to be compared, the intervention of N is inappro-
priate. On the other hand, the intervention of N is in genera insufficient to
settle the cardina number of a set. Unless this number is very smal, settling
the cardinal number of a set requires the use of an extant structure or the
creation of a new one, in order to be sure that by the counting process S is
one-to-one exhausted. The elements of V might be given in a spatia or temporal
linear order, as a string of beads, as a passing train, as strokes of a clock. If this
is lacking, an order must be imposed on V. How it should be imposed is not
trivial and is a matter of learning. It can be done by akind of coordinate system:
a line from the upper left to the upper right is mentally constructed, a second
line below it, and so one continues to the lower right corner. A variation is the
so-caled ploughing scheme; first line from left to right, second from right to
left, and s0 on, aternating. In a horizontal and in a three-dimensiond field,
one may start in the rear and progress to the front, or follow the inverse way.
The use of polar coordinates also occurs — spiralling from the centre to the
exterior, or the other way round.

Structuring by analysing according to coordinates can be promoted in the
learning process by means of examplesin which such structures are conspicuous.
The learner is seduced into strengthening them where they are weaker, and
to imposing them when they are absent. Another way of structuring is by means
of classification: if the dements of V are different in shape, colour, or size,
these characteristics can be used for classification. Neighborhood as a classifier
can lead to locd groupings in S, mentally or physically marked by enclosures.

It is my intention to stress the significance of structuresin the mental develop-
ment of numerosities and numerosity and for the factual determination of
cardina numbers. Though the cardinal number is a characteristic of the structure-
less set, its development and application can be effective only through structures
(at least with regard to definite numbers, rather than indefinite ones, which are
indicated by words like “many” and “few”). The didactical consequences are
clear. One should not try to have the constitution of numerosities depend on
structureless sets, as system fanatics prefer nor on the counting-out structure of
N adhered to by parents, when teaching their children the number sequence.
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| restrict myself to this remark. | did not aim at a phenomenology of number.
This will be developed later. Then methods of determining numerosities in the
reality will be systematicaly reviewed.

3.19. Cardinals of Sets Connected by a Sructure

At this point | will discuss structures that may serve to determine cardinals
and relations between cardinals.

First of dl, comparing cardinas of sets that are mutually connected by a
structure, which may be redlised by a more or less explicit mapping between the
sts S, and S, . Examples:

the nose of x; ¥, a set of people, ¥, their noses — by counting noses
the number of people in ¥, isdetermined;

balot paper assigned to x; instead of the votes cast for a person, one
counts the ballots;

hooks and eyes,

ticket for seat x in the theatre; the unoccupied seats are counted by
means of the unsold tickets;

counting out a s&t by numbering its elements by means of numeras or
written numbers.

A more sophisticated relation between two or more sets that can lead to a
comparison according to cardinality is alternating arrangement. The cards of
a pack are equally distributed among four persons A, B, C, D by dealing one
card (or any number of cards) at atime while aternating cyclically, starting with
A. In a directed string of beads where colours A, B, C, D follow each other
cyclicaly, there are equally many of each colour provided the string starts with
A and finishes with D. Such structures determine mappings where each element
(except the last) is mapped upon the next, and these mappings settle the equality
of numbers.

With planar structures smilar phenomena can be perceived: A chess board
has as many black as white squares. The same holds for any like structure of
m by n squares if m or n is even. For m =2 (Figure 6), the squaresin each row
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Fig. 6.

are mapped upon those in the other to shows that there are as many white
squares & black. From this the general assertion follows for @l even m by
splitting the structure into strips of two lines. The same method shows that for
odd m and n the numbers of black and white squares differ by one.

A smilar phenomenon is the planar tesselation into equilateral triangles of



SETS 59

alternating colour or other regular and regularly coloured tesselations (Figure
7 and 8). At a glance one states that globally each colour is equdly frequent,

Fig. 8.

though it requires caution to cut out of the infinite pattern a finite piece where
indeed dl colours occur equally often.

There are cases where the cardinal equivalence of sets is shown by a one-to-
one mapping rather than by counting out. The mappingsare natural onesinspired
by geometry rather than arbitrary ones like those used with the structureless
sets pictured in Venn diagrams. According to my experience pre-school children
are able to recognise the equality globaly albeit without motivating it; they are
adso able to construct equipartitions of stocks of smilar objects by aternately
dealing them out to persons or laying them on separate piles. Young school
children are even able to reason about it.

3.20. Cardinalities of Sets in a Union Structure
The formulas

#HAUB)=#A +#B for A N B empty
and

#A, Bl=#4 - 4B

and smilar ones with more terms describe in a formalised way facts that are
basic to certain methods of counting and comparing sets. These methods are
not a al self-evident or trivial.

When second graders in groupsof two were asked to count large quantities of objects (sticks,
chips, thumb-tacks, paper clips, and 0 on), those who had not followed the experiment
program in the first grade did not hit spontaneously on the idea of sharing the work, whereas
those who had followed it, immediately shared the work.
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It is one thing, if a st is divided into subsets, to act according to the addition
formulg; it is another thing, even if the formula is mastered, to divide a set
intentionally in order to use the formula. For dl the structures we are going to
ded with, it is the same experience: using given structures or introducing new
ones can require ahilities of different levels. Everything depends on how distinct
or how vague the structure is.

3.21. Cardinalities of Sets in a Rectangle Sructure

The abstract set of pairs from A and B is geometricaly visuaised by the
“rectangle structure” (Figure 9): A horizontal and a vertical order structure is

Fig. 9.

imposed on A and B, respectively. Almost as effective with smal sets is the
rhythmic model of pairs, such as those known, for instance, from reciting the
number seguence (twenty-one, twenty-two, twenty-three, ... , thirty-one,
thirty-two, ... , forty-one, with strong stresses at the end) or from reading a
matrix (a-one-one, a-one-two, a-one-three, ... , a-two-one, a-two-two, ... ,
with stresses on the first number).

But even if the product structure is visuaised or rhythmicaly scanned, its
recognisability can be vague. In a meeting room with m rows of n chairs each,
arranged in straight columns, the product structure is clearly visible. If the
chairs of subsequent rows shift the width of half a chair (as do the stars in the
American flag), the two intertwining product structures must be unravelled
before applying the product formula. Or the product structure can display
holes or other irregularities, which are first filled up or mended to make the
product structure clear. The number of type-writer touches on a sheet of paper
is structured according to lines, but the column order structure of touches,
though indicated on aralil, is rather weak.

In the case of equicardinality of the two factors the product structure is
reinforced; in its geometric visudisation as a square the equality of cardinals
is eadly recognised. The square structure invites one to conceive other structures
as parts of it. For instance the “border structure” (Figure 10), which can be
understood as the difference of two square structures, and the triangle structure
(Figure 11), completed to a square structure, which in turn can be interpreted
as the union of two congruent triangle structures intersecting in the diagonal,
leading to the numerical evaluation



SETS 61

nt=A+A-—n,
thus

A=—;—(n2 +n).

Fig. 10.

Fig. 11.

All these geometrical visualisations — rectangle, square, triangle — need not
be redised in the euclidean geometrical way; the pattern may be deformed
affinely or even topologicaly, provided the structure according to rows and
columns remains more or less clear. Instead of alinear order the columns can be
endowed with a cyclic one; then the product is borne, asit were, by a cylinder;
or if the rows are ds0 cydicaly ordered, by atorus. The column elements can
be the faces of a die; the product set then consists of sequences of faces of
dice, placed in arow.

On the other hand the euclidean structure can play an essential part if sets
are to be compared. With arow or a tower of congruent objects the length or
the height, respectively, can be a criterion of the cardinality. A large number
of such objects can be counted by arranging them in rows or towers of 10, where
the number 10 is verified only once by counting, and assured subsequently by
congruence.

If the rectangular structure of a set of pairs is not given a priori, its mental
image can be supported by visud images. If from m boys and n girls dl pairs
boy-girl are to be formed, the actua pairs cannot be present at the same time.
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However, with n pictures of each boy and m pictures of each girl all pictures
of pairs can be formed (Figure 12); the rectangular pattern then serves to
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Fig. 12.

arrange the m - n pictures of pairs, in order to make sure that none is missing
and none is counted twice. Once this has been understood, the pictorial com-
ponent can be dropped, and a diagrammatic rectangular schema, stripped of
pictorial features can take over, which in turn is replaced by a mental schema.

3.22. Cardinalities of Sets in an Equipartition Structure — m Baskets with n
Eggs Each

| stressed elsewhere* that in many cases the arithmetical product operation

cannot — or not without reinterpretation — be justified by the set theory

product. In m baskets with n eggs each the resulting m - n eggs suggest a st

product, which in fact is absent. The structure involved is a mapping structure,

which | will name equipartition. The set C of eggs is mapped into the set A of

baskets — egg x lying in basket y — and in this mapping f each element of A
has the same number of originas (#f e = #f™*b). The corresponding formula
is

C=#A- #fa (@€4).

In the present case the equipartition can somewhat artificially be restructured

& a product: In the origind set of each element of A (that is, in each basket)
the elements (that is, the eggs) are arbitrarily numbered from 1 to #f™a; by
this procedure the particular sets f'a (@ €A) are mapped one-to-one upon each
other, such that Cis represented as the product of

Aby{1,2,...,#fa}.

In other cases the particular f™a (¢ € 4) might be naturally related. The set
of legs of n cats is structured on one hand by the cats and on the other by the
st {left foreleg, right foreleg, left hindleg, right hindleg}.

* Mathematics asan Educational Task, pp. 189, 250.
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If on each of its n pages a book contains two pictures, one above and one
below, the number of pictures can be obtained as well by n times two pictures,
as by two times n pictures, namely, n upper and n lower pictures. Many examples
in the early phase of learning multiplication are of the kind n times m where
n is large and m is small. As long as the tables of multiplication are not yet
sufficiently memorised and multiplications are performed as (n times) repeated
additions, such multiplications can be arduous. Teachers are inclined to impose
the commutativity of multiplication and its application. Instead, one can proceed
conceptually by strengthening the structure to such a degree that it is seen as
m times n — in the present case, n times two pictures as n upper and n lower
pictures, thus twice n pictures.

In other cases it can be utterly usdess to strengthen the equipartition as to
form a product structure. If in a club A of n persons a president and a secretary
are to be chosen and the number of possibilities is asked for, the set of “boards’
is structured according to president and to secretary. Let f be the mapping that
maps each board on its president; then the origind sets f™a (for various a)
cannot meaningfully be mapped upon each other with the aim that the equi-
partition is strengthened to become a product structure; attempts a doing this
can only cause confusion. Didactically the equipartion is needed as a structure
of itsown.

The example of the last paragraph ill admits of another structuring: the
ordered pairs formed by different elements of A (nobody can be both president
and secretary at one time), which leads to the number

#A - #A—#A=n* —n=n(n-1).

However, if more factors are a stake (president, secretary, treasurer) this filling
up to full products becomes laborious.

3.23. Roads Model of the Product

There is no use in imposing the rectangle image of the set theory product by
every means, and certainly not if in the long run this model would push aside
or even suppress more effective models. In the example | have often cited of
“three roads from A to B, two roads from B to C, how many ways from A
through B to C?" an image is suggested that fundamentally differs from the
rectangular one. Of course, one can help the pupil recast it into the rectangular
pattern, but the rhythmical structure of the description of ways is certainly
more effective. Anyway, it is dedrable that the pupil encounters the road
structure — once disentangled — as a structure of its own that embodies the
set theory product. Whereas visudisng set products by rectangles can be con-
tinued to a mogt three factors (visudised by boxes instead of rectangles),
visudising by means of road structures knows of no restrictions on the number
of factors. The road structure, initialy a problem situation that is elucidated
by the set product, is raised to the rank of a model of its own, the road model
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of the set product. (Figure 16) It is an extremely flexible model; it admits of an
arbitrary number of factors. It invites the embodying of products with “equal”
factors by running to and fro between A and B (n equal factors by running n
times) (Figure 13). It aso invites problems like that of president and secretary

B
A
Fig. 13.

(from Section 3.22) to be embodied by running to and fro while not repeating
roads already used. The set of sequences of length k out of a set with n elements
is embodied by running k times while roads used earlier are prohibited.

3.24. Tree Model of the Product

Consider the task of colouring flags, the upper bar by three colours, the middle
by two others, the lowest again by two others, dl prescribed. After a number of
failures, the task is structured by the pupils according to “upper bar, middle
bar, lower bar”. This can be an action structure (“first colouring al flags with
an upper bar black”, and so on) if the flag patterns to be coloured are given. In
the process of describing, a verbal structure, possibly rhythmically accentuated,
can develop. Schematising produces the tree model (Figure 14).

Fig. 14.

A variant of the tree model is the substitution model, which can produce
beautiful patterns (Figure 15).

The tree model, which is useful in many applications, does not account
adequately for the set product, since the equdity of branches of higher order
is not visudised. By identifying the nodes on the same level one can pass from
the tree model to the road model (Figure 16).

3.25. Equipartitioning Relation

A relation between two sets A and B can be visudised as a subset of the rect-
angular image of f4, B, athough this is hardly illuminating. A more effective
illustration is by means of the set of connections between the related elements of
A and B (Figure 17), and in the case of A =B by directed connections (arrows).
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Fig. 16.

Fig. 17.

In the case of the full relation — each element of A related to each of B — this
gives an image of the set product of A and B. Although this picture is less
appropriate as a model of the st product, it is desirable that pupils recognise
the set product therein.

In combinatorics an important part is played by what | would cdl an equi-
partitioning relation: A relation between A and B such that each element of A
is related to k elements of B, and each of B to | elements of A. Then in the
model k - #4 connections leave from A, and ! - #B from B, which leads to the
equality
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k-#4=1-#B.

This equality plays apart in counting problems.
Examples.

@) A: the corners of a cube,
B: the edges,
relation: element of A lying on element of B,
k=3, I=2,
3-8=2-12.

2 X has N members,
A subsets of X with u members,
B: subsetsof X withvmembers (u <v),
relation: inclusion.

#A=<‘}:), #B=(’,}')

- {N—-u A
k=A\n-v) =)

=2)(0)-()0)

It is worthwhile sgnaling the different character of these examples. The sats
A and B of the first example (and Smilar examples) as well as the relation
between both of them can be given visualy. In the second example — even if
u and v are numerically specified — the sets A and B are given purely verbaly
(though the description can be smplified by spesking of u-tuples and v-tuples
from X rather than of subsets with u and v elements, respectively). Notwith-
standing this verba definition, the sets A and B might be mentally constituted
in this context, thanks to the visual power of the relation of inclusion between
elements of Aand B.

3.26. Structure of the Power Set

A similar phenomenon is shown by 2(X), the set of subsets of X. Againit isa
verbal definition, which can become operational only inrather strongly formalised
mathematics. If on alower level 2(X) is to be constituted as a mental object,
the rather strong and visualy active structure of 22(X) must not be neglected.
This structure arises from the inclusion between the elements. For smal X the
power set 2(X) can be considered as a graph, directed by inclusion (Figure 18

@]
1
{a}/{b}\ )

{6.¢} E g {c, a}E g {a,5}
\ /

t
{a,b,c}

Fig. 18.
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with X = {a, b, c}), which visualises the structure of 2(X) schematically. By the
transition from 2({a, b, c}) to P({a, b, ¢, d}) an induction can be prepared,
leading to the formula

#PX)=2n  if #X=n.

3.27. Mode of the Set of Subsets with u Elements

Let us reconsider the st A of u-tuples from a set X with N elements.* To
congtitute A mentdly, in particular with a view to determining #A, there are
other methods than that indicated a the end of Section 3.25. | will enumerate
some of them.

(1) One introduces the sat C of (u — I)-tuples from X and the relation of
inclusion between A and C, which is equipartitioning.

(2) One introduces the set D of sequences consigting of u different elements
of X (earlier embodied, for instance, by means of the tree or the road model
of Figures 14 and 16), and the “forget” mapping of D on A (forgetting the
order) that maps a sequence into its substratum set.

(3) One introduces an order in X, interprets an element of A a a choice
sequence of length N consisting of u choices of “yes’ (belongsto A) andN — u
choices of “no” (does not belong to A), and visudises this by means of a Galton
board (Figure 19), with N + 1 stories, where “no” means a fal to the left, and

Fig. 19.

“yes’ afall to the right. All choice sequenceswith u “yes’ choices finish at the
uth place of the lowest story (counted from the left, starting with 0). So the sat
A is embodied by the st of dl paths on the Galton board finishing a the uth
place of the lowest story.

3.28. Drawer Principle

The last examples especiadly show the importance of an extant or imposed
structure for the constitution of sets as mental objects. Elsewhere** | have
investigated the difficulties pupils can have with the problem we generaly
describe as the drawer principle. It appears that pupils who have no difficulties
with problems of the type

* N and u should be taken as definitely fixed numbers.
** Weeding and Sowing, p. 210 sq.
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Are there in any school class children that have their birthdaysin the same
month?

can be greatly embarrassed by the type

Are there two people in the world with the same numbers of hairs on their
heads?

or
Are there two match boxes with the same number of matches?

The andysis showed as the source of the difficulty not the cardina aspect of
number but the constitution of the decisive sets. In the first example the relevant
sets are the childrenin a dass and the months of the year, whichare immediately
recognised. This immediateness is lacking in the other examples, athough they
look isomorphic to the first one. Of course, the st of people and the s&t of
matchboxes are not problematic, whereas the other — superficially viewed, the
set N — has at first sight not enough relevant structure to be helpful. But in
order to be helpful an external structure must be imposed on N — as the set of
possible numbers of hairs on heads or of possble numbers of matches in match-
boxes — if the drawer principle is expected to work. In problems where the
cadind aspect of numbers plays a part, it can easily happen that by the data
of the problem N is externaly structured and that recognising this structure is
the very thing that matters.

3.29. Formal Machinery for the Constitution of Relevant Sructure

With the last example | have ventured beyond the frame set out in the beginning
of 3.19 —to discuss structures that play a part in determining cardinalities and

relations between cardinalities. The drawer principle is instead a method for
gaining information about certain mappings from the inequality of cardina
numbers. | now take up the thread from the end of Section 3.17, where |
promised to define the minima formal machinery needed to consgtitute as
mental objects such sats as appeared in the paradigmatic examples | displayed.
Obvioudly this machinery will comprise much less than the means by which
| presented my examples, dthough even this representation could have been
formalised much more heavily. | could dso have opted for less formalising.
Ingtead of N and u | could have sad 20 and 4. It would have been extremely

difficult to avoid the letters X, A, B for sets; the presentation would probably

have become incomprehensible or cumbersome if | had tried it. | could have
avoided the symbol # though not the word “cardind number” or something
like it. | could no more easily have renounced words like “set”, “union”,
“product”, and so on, because it wasjust their didactical place that was being
discussed. In teaching, however, and particularly in teaching young children,
one can a most am at doing something with sets, unions, products, and so on,
rather than describing their status.
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In Section 318 | gave and illustrated criteria that aimed a the cardinal
comparison of more or less clearly structured sets. The terminology used when
exercising this ability at pre-school age, is characterised by such words as “as
many as’, “more”, “less’. As many black as white, as many stars as rounds,
or more, or less. If not in kindergarten, then in the first grades, one can afford
to follow such a statement by the question “Why?’. After each black a white,
after each star a round — this could be the answer, and the pupil could make
such statements more precise by the language of arrows. This, indeed, would
be a new symbolic means, enriching the pupil’s language paradigmatically.
It should be used to describe or delineate a visible mapping rather than — as
happens in modern methods — to construct an arbitrary, artificial, unnecessary
mapping. Is there any reason or need to introduce verbal constructions like sets
of whites, blacks, stars, rounds and to speak of mappings of such sets? | do not
think so. “The st of dl whites has the same number of elements (or the same
cardinal, or cardinality) as that of the blacks’ is aweighty expression by which
mathematical language is intentionally dissociated from the vernacular — a
dissociation of language that at least suggests, if not instigates, or even puts the
seal on, adissociation of redlities.

The additivity of cardinal number in the union of digoint sets is mathemat-
icdly the principle that defines addition of cardinals, and is a posteriori a fact
to be stated and an expedient in counting. “x chips and y chips together is
x +y chips’ (with of course, definite numbers ingtead of x and y) is the minimal
linguistic means to verbdise this fact. In set language it is done by the formula

#AUB)=#4 + #B.

At the level of, say, primary schodl it is the only opportunity to use the symbol
U (there are somewhat more opportunities for M). Between the formulation in
the vernacular and its formalisation by means of the above formula many
intermediate stages can be distinguished, like “if 1 form the union of digoint
sets, their numbers are added”. What good can be gained for understanding
addition by teaching a formalisation that transgresses the vernacular? Nothing,
as far as | can see. The didactical problem of the arithmetic operations is —
besides teaching algorithms —a problem of application, which | shal reconsider.
The pupil must learn, for instance, that an addition is required to know how
much money he had yesterday if he has this much now and spent that much
in the meantime, and that he should add 7 to his own age to know the age of
somebody 7 years his senior. Sats do not help much in this case. Even though
| can make a st of seven marbles, with seven florins or seven years this is an
artificia if not meaningless concern.

Compared with the addition formula there are better reasons for explicitation
of the multiplication formula

#A4,B1=#4 - #B.
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This formula does not spring from a mere definition — at least if multiplying
is generated as repeated adding. There is no doubt that sets of pairs can and
should be constituted as mental objects at an early age and that the product
formula can and must function. Should the formula be made explicit and, if
s0, how? | say “yes’, and add “in a paradigmatic way”, though one paradigm
is not very likely to suffice.

From 4 boys and 3 girls | can form 4 - 3 boy—girl pairs.
4 roads fromA toB and 3 fromBto Cis4 - 3 fromA viaBto C.

Should one go further? Replace 4 and 3 by letters? Replace “this much ..."” by
“the number of elements of the set of ...” ? Anyway, it would be less artificia
than with the addition formula since the members of the pair in the multiplica-
tion formula can indeed naturally be interpreted to form a s, at least, up to a
certain limit. The product formula leads via the rectangle model of the set of
pairs to the area formula for rectangles. As far as | know, even the most fanatical
advocates of sets did not dare to interpret length and width as sets of the number
of times a measuring unit could be laid down aong the one side and the other,
which indeed is didactically absurd. Formaising the area expression stays, as
far as | can ascertain, dwaysin the sphere

4 horizontal by 3 vertical piecesis4 - 3 squares,

which is the same vernacular expression as in the earlier examples, or more
tightly formalised,

area = length times width,

which is a simplifyingrather than complicating way and clearly lacks any associa
tion with sets.

In the case of equipartition mappings is there any need to go beyond verna
cular formulations like

5 boxeswith each 12 eggsis 5 - 12 eggs
or in the case of equipartition relations beyond

3 edges from each of 8 corners and 2 corners on each of 12 edges is 24
pairs Fedge, corner’,

(of course with schematic illustrations)? Yes. In the case of equipartition rela-
tions it can pay one not to be satisfied with the doppy motivation of “thrice
counted” but to understand and to have understood that behind this “multiple
counting” is the counting of related pairs.

330. Need for More Formalising

The sets most often discussed in the present chapter have the peculiarity that
they can be visudised (or otherwise embodied) in a way that is both more
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honest and more subtle than Venn diagrams. It is exactly for this reason that
premature formalisng can be dispensed with, at leest if the examples where
the sets occurred had sufficient paradigmatic force.

When and in what measure can a need to formalise arise? | must anticipate
this question, which will be asked and answered later in a broader context. If
| ask it, | mean not only formalising but dso transgressing the limits of the
vernacular by adaptations of it that, as seen from the vernacular, look like
jargon. The sets considered in the present chapter bear, or can be indicated by,
meaningful names, such as “ludo board”, “paths finishing at the uth node”.
Sometimes they were denoted by |etters, but this happened because | had to ded
with a variety of such examples side by sde and to digtinguish them efficiently
and economically.

Formalisng is a linguidtic activity, and the need for formalising isin the first
ingtance a need for a better means of communication (communicating with
both others and oneself). In particular, far-reaching requirements are to be
fulfilled by the formalism as soon as oral, or often even ostensive, communica-
tion should give way to written and other kinds of communication that lack
ostensive means. However, not only do languages have a communicative function,
but they also serve as closed, more or less automatically functioning, systems.
In a more advanced stage of formalising, the need is felt to guarantee this auto-
matism: formalising is made subservient to developing algorithms.

As far as the communicative aspect of formalising is concerned, one can
distinguish: formaisations of vocabulary, some of a simplifying, some of an
elucidating character, and formalisations of syntax, mostly of a systematising
character. An example of the first sort: the reinterpretation of the vernacular
“quadrilateral” and introduction of terms like sguare, rectangle, rhombus,
parallelogram, trapezoid. An example of the second sort: the convention that
squares are to be counted both among the rectangles and among the rhombuses.
Another example of the first sort: indicating definite objects by letters, and of
the second, using letters to indicate variables.

Historicdly letters for variables were first used in euclidean geometry, where
they were obvioudy needed for communication: as soon as geometrical con-
structions and reasonings are to be lad down in writing, ostensive means of
expression like “this point” and “that point” do not work any more; they are
replaced by conventional variables, indicated by letters. This situation becomes
more involved if the exposition is illustrated by a drawing: if the same letters
are placed a certain points on the paper they dso have the appearance of
congtant proper names of these points. On the other hand, this formalisation
in geometry has an agorithmic offshoot: a straight line through A and B does
not get a brand-new name but an agorithmic one, AB. But this does not lead
to developing any even weakly automatised agorithm.

A formalisation of great value and momentous consequences, which we are
so well acquainted with that we do not experience it as such any more, is the
creation of our familiar system of number notation. In contradistinction to the
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ancient Egyptian system and the so-caled Roman numerals, which, as it were,
literally trandate the numerals of the vernacular, the Indian-Arabic system is
a trandlation of the abacus language and was distinctly motivated historicaly
by the need to transfer the advantages of the abacus expression onto the powder
table or writing paper. The Indian—-Arabian figures have become an inseparable
piece of our written language (beyond the frontiers of any particular written
language); nevertheless they have remained a foreign element in it, as appears
from the fact that they are taught in the arithmetic lesson rather than in the
language lesson. This is so for a good reason, because their flawless syntax is
very unlike that taught in the language lesson. Formalising the number language
by means of the Indian-Arabic notation is highly motivated by its algorithmic
sequel: Indian-Arabic arithmetic. Even the notation of operations has then
been formalised, both within the vernacular and by specid symbols beyond
the vernacular.

Fixation of a spoken language in writing is quite another sort of formalising
—itisamore primitive, less specialised activity and does not invite algorithmisa-
tion. It is certainly not by accident that teaching both formalisms starts at the
same age and that they are very much dike regarding their fertility in education.
Thisis aquestion which will be reconsidered later.

The function of formalising the number system is primarily communicative,
and only by the algorithms of column arithmetic is it made subservient to
guaranteeing the rdiability of algorithms. Too often, thiscomponent isidentified
with mathematics. Modern mathematics in the primary schoal is readily inter-
preted as formalising for the sske of agorithms. It is the traditional view that
at the age of obligatory instruction the child becomes susceptible to learning
formalisms (though not to learning formalising), but it is a mistake to believe
that this is dso the moment of formalising for the benefit of automatising.
Innovators were not satisfied with the formalisms taught according to tradition
a the lower leves of the primary school. A large number of new formalisms
were invented for this stage of development, but their communicative function
is often doubtful, and the algorithmic one remains within the narrow limits
of little games. Up to now, only formaisms with a strongly communicative
character have proved successful at low levels. An example: the arrow language
for arithmetic operations and their inversons and for symbolisng operations
on the number line. No one ever tried to go beyond this limit to teach the
denoting of mappings by letters at an early age. In genera, to decide at which
developmental stage this would be feasible would depend on the total state of
formalising. The most natural, and experimentally tested, formalism are letters
for variables representing numbers or magnitudes, which possbly now sarts
too late. With respect to sets, which were the subject of the present chapter,
| can discover a need for formalising and formalisms only at a quite advanced
stage.
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NATURAL NUMBERS

4.1-4.9. PHENOMENOLOGICAL

4.1. According to Peano

A great ded of what would be expected here, has been presented elsewhere
earlier.* In order to avoid usdless repetition, | am going to summarise it within
the context of what has to be added.

The most usud introduction of natural numbers at an advanced leve is
Peano’ s axiomatics:

A st N (“natural numbers’) with

@) an element 0 €N and

2 aone-to-one mapping f (“successor of ...” ) of Ninto N,
such that

(3  /N=N\{0}

(thus: each element has precisely one successor and — up to 0 — precisely one
predecessor by means of f) and

4 OEMCN)A(MCM)-M=N

(thus: with the same f the set N is minimal with respect to (1) and (3)).
Instead of using subsets, (4) may dso be formulated with predicates as the
“principle of complete induction”:

@) Let E be a property of natural numbers such that
E(0) and
E(n)~>E(f(n)) fordln€EN,

then
E(n) fordl neN.
If we let
M={n€E€N |E@n)}
then under the suppositions of (4)
oeM

* Mathematics asan Educational Task, Chapter XI.
73
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and because of
n€M-E(n)~>E(f(n)) > f(n) EM,
it follows that
fMCM,
and because of (4)
M=N,

E(n) foral n€&N.

Thus (4) - (4"), and conversely it can be argued that (4") - (4).
In N, operations can be introduced inductively, the addition by means of

a+0=a
a+f(m)=fla+n) foraln,

which defines generally the sum
atb

(though the proof is not as obvious as it looks). Commutativity and associativity
of the addition are inductively proved. Similarly, the multiplication:

a-0=0
af(m=a-n+a.

The order relation in N isno problem &t al.
From here abridge can be built to the finite cardinds: putting

#{xeNIl1SxSn}t=n,

one has to prove that indeed dl these cardinds are differnt. These then are the
finite cardinas, and any set with such a cardina is called finite. Moreover, one
can prove that for finite sets M, , M,,

#(M1 UM2)=#3W1 +W2 lfMl ﬂM; =O,
#M,, My 1= #M, - #M,,

which means that the inductively defined and the set-theoreticaly defined
operations coincide.

InPeano’ saxiomatics N accountsfor the counting sequence, f for the counting
act, and (4) for the idea, not eadly verbalised, that the counting act successvely
exhausts the counting sequence. By the axiomatisation the counting sequence
has been frozen as it were; N is static; time and action look as though they are
diminated.

On the agorithmic plane the counting sequence is, asit were, concretised by
means of the decimal notation: in
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n=ar...a,4¢

each ¢; may be one of the symbols O, 1, 2, 3, 4, 5, 6, 7,8,9. The counting act
changes these symbols in a well-defined way. Infinity seems to be encapsulated,
but it again appears in the subscript k (the number of digits minus 1 if ax #0),
which fortunately is of alower order than n itsalf.

4.2. According to Euclid

The phenomenology at the background of Peano's axiomatics is the counting
process in the time flow; the numerals one, two, three, ... should properly be
read as first, second, third,.... Another phenomenology, whichis more original,
is accounted for in Euclid VII. Before Peano, and even years later, it has in-
fluenced theoretical expositions on the number concept.

Euclid says

Unit isthat after which athing is cdled one.
Number isa set composed of units,

and 4ill in the Encyklopadie der mathematischen Wissenschaften, founded and
edited by Felix Klein, we can read*

Counting things means consdering them as of the same kind, taking them together and
assigning to them individualy other things, which are dso consdered as of the samekind.
Each of these things to which by counting other things are assigned is cdled a unit, and
each of the things which by counting are assigned to the others, is cdled one. The result
of counting is cdled number. Because of their being of the same kind, as regards the units
and the ones, respectively, the number does not depend on the order according to which
the ones are assigned to the units. (Trandation by the author.)

Hilbert in 1904** dill tried to base number theory on a phenomenology of this
sort, and his later formalist approaches are to be understood from the same
phenomenadlogicd viewpoint.

From Euclid to Schubert a number condds of units (“ones’ according to
Schubert) — a mental object composed of smple objects of the same kind.
Number as a cardina is explicitly mentioned by Euclid only in the case of the
“one” (though in fact the “one” is no “number”): by means of the unit one
can say of athing that it is one thing. Euclid could have added that by means
of the two-ness, three-ness, ... two, three, ... things can be named. Euclid

* | A 1(1898), H. Schubert, Grundlagen der Arithmetik. In his criticism of H. Schubert’'s
contribution (‘Uber die Zahlen des Herrn H. Schubert’, Jena, 1899), G. Frege stands on

somewhat firmer ground than in that of Hubert’s Grundlagen der Geometrie (Jahresbericht
DMV 12 (1903), pp. 319-324, 368-375), but as to indpidity both criticiams are well
matched. Frege's lack of understanding both of phenomenology and of axiomatics has
proven symptomatic of the logidtic attitude in generd.

** Verhandlungen des Ill. Intemationalen Mathematikerkongresses in Heidelberg, 1904.

From 3rd to 7th ed.,, Appendix VI of Grundlagen der Geometrie.
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kept silent about the way this designation is to be established. Various authors
have filled in this gap with various formulations.* In order to count a heap of
things, one has to see them as a set of things of the same kind — cows and
horses as a herd of animals, because after the numeral a noun is expected — and
to these objects other objects, likewise al of the same kind, are assigned —
counters on the beadframe, or chips, or talies, or mental equivalents of them,
which together form numbers.

At the time that Schubert wrote his article, such a consideration was gill the
normal one, though it should have been obsolete since in the course of the
nineteenth century complete induction had become the most striking property
of N and had beenformulated as such by Peano. This thenisthe ordinal approach
to natural numbers, preferred today, which leads in the straightest way and with
a stress on what is essential for mathematics to the mathematical use of numbers
as arithmetical objects. It is a disadvantage of this approach that it does not
match a phenomenology where a number consists of units, and an even greater
disadvantage that numbers serving to count something and being (cardinal)
number s of something come at the end of along and arduous course of reasoning.

4.3-8. According to Cantor, Frege, Russell & Whitehead

4.3. Number as (cardina) number of something is Cantor's approach. Cantor
gys:**
“Potency” or “cardinal number” of M we cdl the general concept which by means of our
active thinking power is created from a st M in the way that we abstract from the quality
of its different ements m and the order of their presentation.

Since esch single dement m, if its quality is disregarded, becomesa “one”, the cardinal
number M (of M) is itsdlf a definite sst composed of nothing but ones, which exists in our
mind as the mental image or projection of the given set M. (Trandation by the author.)

This is followed by the definition of equivalence:

Two satsMand N arecaled equivalent, denoted by
M~N o N-~M,

if it is possble by alaw to put them in ardation with each other, where to each element
of one of them corresponds one and only one of the other.

And later on:

that two sts M and N have the same cardina number if and only if they are equivaent.
The “if” is motivated by the fact that whenever the cardina number of M is
at gake, the podtion and the character of the eements of M does not matter

* For ingtance E. Schrdder, Lehrbuch der Arithmetik und Algebra, Leipzig, 1873.
** Math. Annalen 46 (1897), pp. 481483 = Gesammelte Abhandlungen, pp. 282-284.
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and consequently the elements of M can be replaced with the corresponding
“ones’ of N according to the correspondence. The “only if” is motivated in
an even more curious way,

that between the elements of M and the different ones of their cardinal number M there
exists a mutudly one-valued correspondence ... Thus we can say that M ~ M. Likewise
N~N.0if M =N, thenM ~N.

We see the mathematical construction entwined with a phenomenology that
continues Euclid's. the cardinal number of M condsts of units, abeit of more
than a finite set.

This cannot do any harm, one should say, because the only thing that matters
is the definition of equivalence. It suffices to know when sets are equipotent;
it does not matter what the cardinal number of a s&t is. This is intentional
concept building specidised on cardind number. | assgn the same cardinal
number to two Sets as soon as they are equivalent.

4.4. Cadinds are dso numbers in the sense that you can perform operations
on them defined as follows: the addition by means of the union, the multiplica-
tion by means of the set product:

Wl +W2=#(M1 UM2) lfMl ﬂM2=O,
Wl '#Mg=#l7lll,M2—1.

This is — for finite sets — simpler than in Peano’s approach, and the various
laws for these operations are much more easly proved.
Powers is another feature obtained by set operations

(#M,)#M2 = #,M2),
where M, M2 is defined as the st of mappingsof M, into M, .

45. Notwithstanding the concesson made in the lagt paragraph of Section
4.3, the question of what the cardina number of a st is has been answered up
to a point. The answer, which stems from G. Frege and Russdll & Whitehead,
is aparadigm for what is called extensional concept formation. All setsequivalent
with M must possess the same cardinal, thus cardinality of M is defined as the
thing common to them. But what isthe thing commonto them? S theoretically
viewed it is the dass of al sets equivaent with M. (A remark: the dass of dl
sets equivalent with M is an object that must be handled carefully, as appears
from various paradoxes; the term “dass’ instead of “set” is meant as awarning
dgn) At Frege-Russell’s standpoint one is in a world far away from Eulid—
Cantor’s phenomenology. For non-mathematicians this definition is so extra-
ordinary that, for instance, Piaget read the Frege-Russell definition as though
a cardinal number were a dlass of equivalent units.
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4.6. Here we are not interested in cardinals in generd, but epecidly in number,
that is, finite cardinals.

Cantor* starts with a set £, with one element and assgns to it the cardinal
1. He adds another element to get aset £;, to which he assigns the cardina 2:

By adding fresh elements we get the series of sets
Ey=(Ey, 1), E3=(Ez,€3), .- -,

which in an unlimited sequence deliver successively the other, so-cdled finite, cardinas,
denoted by 3, 4, 5, .... The auxiliary use we made of the same numbers as subscripts is
justified by the fact that a number is not used in this sense until it has been defined as a
cardind.

The last sentence shows that the finite numbers are not presupposed, but truly
defined.

All cardinals obtained by this process are caled finite. The set of the finite
cardinals (NY{0}) has the (countably) infinite cardind ¥,. Each infinite set
M (tha is, whose cardina is not finite) contains a countably infinite subset,
which arises as follows:rTake an element 2, of M; since M is infinite, M # {a, }.
Hence there is an a, € M with a, # a,, Snce M isinfinite, M # {a,, a; }. SoIit
goes on, to produce an infinite sequence a,, a;, . . . of different elements of M.

4.7. Cantor's presentation of natural numbers is as naive as Euclid's. The only
difference is that the numbers are not statically present as in Euclid. They are
produced in the course of time, and counting out a countably infinite subset
from an infinite st is dso done in time. Cantor’s new idea is not his presentation
of natural number but the first clear explanation of what it means for a number
to be the number of a st of things.

On the first point, Frege has explored a less naive gpproach: He took al sets
¢ of cardinals such that

¢ containsthe 1
with each cardinal ¢ contains the one that is 1 larger,

and of all these sets he took the intersection — thus the smallest — and this was
the set of finite cardinals. This method to describe in one blow infinite construc-
tions previoudy projected in time has since become paradigmatic. At the end
of his work Frege confesses that his plan became unsettled by paradoxes that
had been discovered in the meantime.

Russdll & Whitehead proceeded more carefully: At this point they do not
consder sts of cardinals. They define sets @ according to Frege's prescription,
but their elements are finite sets rather than cardinas:

$ contains the empty set,
& contains with any set X the st X U {X},

* Math. Annalen 46 (1897), pp. 214-215 = Gesammelte Abhandlungen, pp. 289-290.
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and among dl these sets they determine the smallest. The example sets for the
finite cardinasthen are

0, {0, {01} {0, {O} {{O, {o}}}, ... ..
It looks, as asatirist observed, like alibrary with

in the first volume, nothing

in the second, the table of contents of the first,
in the third, the table of contents of the second,
andsoon-.

These are the units from which the Russdll & Whitehead numbers are composed.
The existence of this — or some — infinite set must explicitly be postulated
according to Russdll & Whitehead.

4.8. Another point where Cantor proceeded naively was in counting out a
countably infinite subset from an infinite set. In order to describe this process in
one blow, one imagines that assigned to any non-empty subset X of M is one of
its element o(X) € X. The desired countably infinite subset A of M consists of
consecutively the elements

ap =p(M), ay=¢(M\ao}), a;=9p(M\{ao,a,}),....
More precisely, by induction

Ao = {‘P(M)}
Airy =A; U {p(M\4))} foralli€N,

and findly
A= UiENAi'
Or, without explicit induction,
{v0n}ie®
and
ifX€®, then XU {pM\X)} € P,

and among these sets ¢, take the smallest (the intersection of dl of them).

The indispensable instrument for this definition is the function ¢, which
to every non-empty part X of M assigns an element of X — a function whose
existence is obtained by the so-called axiom of choice.

4.9, According to Dedekind

A countably infinite st can be mapped one-to-one on a proper subset; for
instance, the A is mapped on 4\{a, } just obtained by an f such that fa; = 2+, .
Thus every infinite set can be mapped one-to-one upon a proper subset —
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the M which we have just considered, by mapping A according to f and the
remainder identically.

This characteristic property of infinite sets, that of being equivaent with
certain proper subsets, was R. Dedekind's* starting point for a quite origina
theory of finite sets.

In the theories we have summarised up to now the finite cardindities were
inductively generated, though finaly the inductivity became somehow en-
capsulated. In Dedekind's method the induction is self-generated. Dedekind
defines

aset isinfinite if it is equivalent with a proper subset,
and of course
aset is finite if it is not infinite.

He starts with some infinite st M — his proof that such a set exists is not
convicing.

Since M is infinite, there is a one-to-one mapping f of M on a proper subset.
Let a €M\fM. A subset N of Mis defined by

(1) aEN,
(2  fNCN,
(3 N minima with respect to (1) and (2).

Subgtituting N for N, a for 0, and f for the successor mapping, one gets exactly
the system of properties that defines N. Moreoever — without the axiom of
choice — one has succeeded in finding in any infinite M a subset equivalent
with N, thus a countably infinite subset.

4.10-11. Tested Didactically—Phenomenologically

4.10. If dl or part of the preceding andyss is considered too high level and
consequently out of place, | would object that it is subject matter found in
some modern textbooks, for instance, for the 6th grade. There it looks like a
closed system, though in fact it is, asit were, tiptoeing in wooden shoes, display-
ing subtleties in a rudely defective context. | have discussed this elsewhere**
It will have become clear from my exposition that with each profundity we
get further away from the phenomenology of number asit is naively experienced.
The definitions quoted from Euclid interpret a directly-from-the-abacus abstracted
consciousness about numbers. They are, however, not operationd in the number
theory to which they are meant to be the introduction. Complete induction
was repeatedly applied from antiquity onwards, sometimes even in a profound
way, but not until Pascd was it formulated. Complete induction turned up in

* Wassind und wassollen die Zahlen? 1887, 1893.
** Mathematicsas an Educational Task, Chapter XI.
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ever more examples, and was ever more conscioudy used, but not until two and
a haf centuries after Pascd did the key position of complete induction for the
concept of natural number become clear. Likewise it became clear that complete
induction could serve to define the arithmetical operations and prove their
properties. The most modest interpretation of Peano’'s axiomatics is to consider
it as descriptive. Anyway, it is operational, wherever induction plays a part in
mathematics. A step further is to ascribe a definitory character to it, that is,
defining what natural numbers are; then Peano’s axiomatics is only operational
as long as one moves within the foundations of mathematics.

As far as Cantor’s definition of cardina numbers describes number as numer-
oSty and draws attention to its invariance under one-to-one mappings, it is
a phenomenology of the naively experienced number; if it is meant as defining
number, it belongs to the foundations of mathematics; if, moreover, Frege's
and Russll & Whitehead's formulations are used, it is research in foundations
by methods that have arisen from a profound criticism in the foundations of
mathematics. Dedekind's definition of infinite set, produced by a clever change
of perspective, presupposes a well-stuffed arsend of mathematical strategies.

The definitions of addition and multiplication by complete induction can
be seen as an adeguate phenomenologica description of the naive process of
adding by “counting forth” and of the naive process of multiplication by repeated
adding (producing multiplication tables); interpreted as definitions, they belong
to the foundations of mathematics, and the same holds for the laws of addition
and multiplication, whereas, when pronounced for numerosity rather than
for counting numbers, they are obvious — the need for proofs arises only in
systematising the counting number approach by Peano’'s axiomatics.

In the numerosity approach the definition of addition describes adequately
what happens if quantities are taken together, though it is expressed at alin-
guigtically high level; in order to be practically operational, it must be completed
with the counting-forth definition. The definition of multiplication in the
numerosity approach adequately accounts for the rectangle model of multiply-
ing, which is an indispensable complement of multiplication defined by repeated
addition. For the power definition in the numerosity approach (cf. Section
4.4) traditional school mathematics does not possess an analogue, though
creating one would be feasible and worth paying attention to.

4.11. Numbers, counting, and arithmetical operations are first of dl a means
to organise phenomena where quantities play a part. All theories of natural
numbers are rooted in these means of organisation. But dl theories go beyond
that. Mathematics is characterised by atendency which | have caled anontologi-
sation: cutting the bonds with redity. This tendency is entirely justified. It is,
however, the result of historicd and individual development and cannot be
supposed to be innate to the learner’s mind. Evenless canthelearner be presumed
to be susceptible to anontologised mathematics. Attempts at indtilling it lead
to false concretisaions.
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Auxiliary tools in the process of anontologising are: change of perspective
from description to definition, where observed properties of mathematica
objects are used to define the objects in order to detach them from their origin;
and the replacement of intentional by extensional concept formation. Neither
tool is simply present in the mind. They require development and exercise.

If a pupil who can identify rhombuses at glance isolates from the multitude
of properties of the rhombus a few characteristic ones, which bring about
a forma definition of rhombus, he performs a loca change of perspective and
a first step on the way to anontologising mathematics. With number, the same
step is much longer because number is more familiar to him and the necessary
change of perspective would be more globa in character. Even more difficult
is extensona concept formation by equivalence, which | paid attention to
elsewhere*. Thisrestricts to narrow domains teaching theories of natural number.

4.12. Phenomenologically Too Low a Level

One current in the nineteenth century, which | have neglected up to now, was
characterised by a superficial kind of formalism: the natural numbers considered
as symbols, sequences of digits, with operations performed according to merely
conventional rules. In a sense it is not as mad a phenomenology as one would
think. Rather it is to the point as far as it describes a kind of instruction in
arithmetic and the attitude fostered by this instruction: an attitude of viewing
numbers as symbols and doing arithmetic according to conventional rules.

Neverthedless, this phenomenology is unsatisfactory. It does not account
for the relatedness of numbers and arithmetic with reality, where numbers
and numerical operations have a meaningful counterpart. Moreover, this
phenomenology does not carry farther than understanding the most primitive
arithmetic. The activity described by this phenomenology is that of a mechanica
(or dectronic) caculator rather than that of a human caculator who can handle
the instrument and is obliged to understand a a higher level the am of the
numbers and operations. It cannot be denied that in the nineteenth, and even
for many yearsinto thetwentieth century there was a need for human calculators
who experienced the numbers and the operaions a this primitive levd, and
this need justified socidly a corresponding kind of instruction. With the rise
of better perfected caculating machinery, and its mass production, the need
vanished for people educated according to those principles. If numbers and
numerical operations are taught today, the instruction can no longer amount
to programming a computer, to which numbers and operations are indeed
meaningless and conventional.

The primitive formalism of the nineteenth century has given away in the
twentieth century to a more profoundly understood formalism, by which not
only elementary arithmetic but the whole of mathematics is interpreted as a

* Mathematics as an Educational Task, pp. 31-32, 213-214.
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language with a conventional syntax. However, the mathematician does not
then move within this language but reflects on it — reflections that can be
syntactical or semantical. The same holds for dl kinds of formal languages which
are extensively studied today; they are “spoken” only by and with computers.

4.13. Developmental Phenomena

From the concept of natural number, which has occupied us up to the previous
section | now turn to the mental object or objects that can play a part in acquir-
ing the concept. | use the plural “menta objects’ because | must distinguish
a least between particular natural numbers and the natural number as mental
objects, but certainly dso between numerosity numbers and counting numbers
as well as between numerosity number and counting number. For acquisition
of the concept “natural number” even more is required: constituting certain
relational patterns between natural numbers.

Developmental facts about the constitution of numbers and number are, as
far as | know, scanty. Small cardinals seem to be constituted early — as people
assert, 2, 3, 4 a the ages 2, 3, 4, respectively. In Section 3.18, | asked what
part structures play in this. One could add many more questions: to what degree
the numbers aimed a are bound to certain objects or kinds of objects or to
certain representations, whether and how the constituted numbers are expressed
verbaly or enactively, what in a certain stage of restricted constitution impedes
or stimulates the constitution. According to my experience the continuation,
at least as far as verbalising is concerned, has the character of differentiation:
a numera used in the sense of “many” starts playing a more specific part, in
order perhaps to be replaced by another that takes over the meaning of “many”.

The mgjority of children learn counting before congtituting cardina number;
counting is reciting numerals, initially in an arbitrary order, later in the right
order though with gaps, finaly without gaps. In this period they dso learn
counting something; it is arbitrarily pointing to the objects, before it becomes
a systematic procedure; first graders can dill have difficulties with one-to-one
exhausting even if they know that this is the way to do it. The connection
between counting and cardind number can be lacking in spite of verbalising.
I know of only one case of a child that started counting only after the complete
constitution of the numerosity number (cf. 3.18).

4.14. Conservation

With a view to this lack of factual data on the development there is no way out
except the phenomenologica method. In fact, Piaget took it and, influenced
by mathematical ideas, chose conservation as a criterion of what | have called
congtitution of number. For the cardinal number as defined by Cantor, conserva-
tion or — in mathematical terms — invariance with respect to certain transforma-
tions isindeed an important characteristic.
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| have already discussed “conservation” criticaly (Section 1.25). The term
itsdf is confusing because it does not indicate the transformation with respect
to which invariance is postulated. In the case of length it could be, according
to my enumeration, congruence transformations, flexions, and break-and-make
transformations or permutations of parts. Numerosity looks simpler: everything
that has to do with transformations can be brought under the concept of one-
to-one mapping. It can, indeed, but this does not mean that it must. Many ideas
reduced to one when logically possible can refer to ideas that belong to different
abilities and to abilities that are being learned under different circumstances.
Moreover, we noticed already in Sections 3.18-27 that the congtitution of
cardinals may depend on structures and isomorphisms, rather than on sets and
one-to-one mappings.

Up to the present day nobody can say whether the stress Piaget put on
consarvation was justified, whether indeed certain invariances characterise
the constitution of certain mathematical objects, whether this might be true
of adl mathematical objects for which Piaget developed conservation criteria,
for some of them, or for none. | guess that in principle Piaget chose the right
way, but | believe he deserved to be followed more criticaly on this way in
every detail than he has been in fact.

Another doubtful element in Piaget's method, and a matter of principle, is
the use of temporal cross-sections instead of longitudinal observation (which
he rarely performed) The unavoidable drawback of that method is that the
observed conservation phenomena are possibly only criteria of the constitution
of mathematical objects rather than developmenta phenomena on the way to
it.

4.15. Invariances With a Sngle Set

With dl these provisos | am going to follow Paget in the phenomenologica
search for invariances that might matter in the process of constituting the
numerosity number. | first mention four of them, dl related to one Sngle st
rather than to comparing two sets:

Invariance
over time,
under change of standpoint,
under shake transformations,
under break-and-make transformations.

Some comments on these terms, in particular the first:

A child (4; 8) counts her fingers. “Five’. And how many did you have yesterday? “1 have
forgotten”. Another child (4; 6) laughs at this question.

This example shows that the invariance over time is not at dl self-evident. This
ingght is acquired earlier or later by different children. It is no logica fact.
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Indeed, the invariance depends on conditions. The child knows circumstances
under which something becomes more or, less — plants that germinate, flowers
that drop, families that increase or decrease, drops that split and unite.

If something is added, it becomes more,
if something is taken away, it becomes less,
if nothing happens, it remains equal,

these are principles for dl kinds of magnitudes, discrete and continuous. The
only problem is to know whether nothing happened. This knowledge depends
on a vast body of factual experience. Adults are hardly able to imagine that
and how they acquired this knowledge in their own development.

Invariance under change of standpoint is a Smilar experience. A s&t moved to
another place and observed there, or observed in the same place by another
observer, must possess the same number. This too is not self-evident. It can
mean a discovery to look for a cause for why under certain circumstances a
st observed from another standpoint can be more or less,

The shake transformations again are concerned with one set: cookies on a
plate can be moved, flowers in a vase rearranged, sheep in aflock run — and
a least mental continuity ties the initid to the final stage and guarantees the
invariance. Like the invariance over time and under change of standpoint,
invariance under shake transformations has never properly been tested with
children in Piaget-like experiments as far as | know. Firgt of al, in the classca
test for conservation of number the relevant shake transformation is obscured
by a built-in mideading cue; the discrete st of objects is presented in a such
way that by the very fact of presentation not only the number is defined, but
ds the length, which is intentionally not kept invariant. Moreover, the shaken
<t is compared with an unshaken one, which produces a new difficulty.

In the cases of duration, change of standpoint, and shaking, one could main-
tain that they concern conservation of sat rather than of number: the st of
fingers, cookies, animasremains the same over time, under change of standpoint,
after shaking, and so does of course its number as a property of the set.* |
have no objection againg seeing it this way. | do not believe it matters much.
The case of the break-make transformation, however, is different. It is breaking
and rebuilding a set. The reason why | consider these transformations separately
is amilar to the reason | gave in the case of length. | should add that it was
in congdering “length” that | first became aware of this kind of transformations
and their importance.

Bresking divides a set into two or more whether the pieces are taken apart or
merely separated by true or symbolic wals. Remaking brings them together or
removes the separation. Meanwhile the objects do not cease to belong together,

* | could have considered these invariances dso with respect to lengths; then the invariance
of st would have had as its analogue the invariance of long object.
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which can be expressed in the intermediate question, “Are there gill as many
together?’

Break—make transformations seem to me to be the most effective means
of developing in variance as a general feature, for number as well as for length.
The learning process could take the following course: A smal number of objects
is removed from the set in order to be added back again — possibly at another
place. This procedure is continually repeated, while the question is asked, “Are
there now more, or less, or the same?’

If information on the development of conservation of number is wanted,
these invariance phenomena should be tested separately: “How many were there
yesterday?’ “How many are they if you look that way?’ “How many are they
now?’ (after shaking) “How many are they now together?’ (after breaking).
A child that is not familiar with these invariances will not be able to answer
immediately; he will rather try counting anew.

A child that cannot yet count sets could be asked the same questionsin the
version “Are there as many?’ instead of “How many are there?’ Or one should
ask him to estimate the number before and after.

4.16. The Counting Number

It has often been noticed that many children count before having constituted
number as a mental object. Let us distinguish

counting, that is, reciting the number sequence;

counting something, that is, in the counting process connecting the
numerals with the set that is counted out or produced;

interpreting after counting the counting result as number of the counted
or produced set.

Counting may or may not be accompanied by insight into the structure of the
counting system.
Various aspects of thisinsight are tested with questions like

what follows 3?

what follows 23?

what follows 9?

what follows 29?

what follows 99?

what precedes 4?

what precedes 24?

what precedes 10?

what precedes 30?

what precedes 100?
whichis earlier, 6 or 9?
which is earlier, 26 or 297
which is earlier, 29 or 36?
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Children who lack thisinsight count — silently — anew from 1 up to the desired
place, as do many adults, if the order in the — less structured — alphabet is at
stake.

Insight into the structure of the system of numeralsis made easier or acquired

by

reading and writing numbers,
producing the number sequence by writing.

This ability does not depend on “counting something” and on the relation to
numerosity.

Counting by tens, by hundreds

allows one to get on quicker — it plays a part in some games. House numbers
suggest

counting by two.

A difficult job is
counting back

if it is not supported by acquaintance with the written image. Likewise
counting back or forth a given number of steps from a given number

does not in principle depend on “counting something” and on the relation with
numerosity, though this counting activity will usudly be motivated, or be
accompanied by “counting something”.

The objects to be counted can be

visible, palpable, audible, kinesthetic, rhythmic,
dl of these combined,

movable, fixed,

demonstrable, observable, mental.

The counting activity can be accompanied by movements of
fingers, eyes, hands, feet, or other limbs.

The counted objects can be
indicated, marked, separated.

The numbers can be firmly attached to the objects to be counted by
mapping the number sequence on the number line

and
operations on the number line.

Then it means
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counting steps on the number line,
and

combining sets of stepsinto jumps on the number line.
[llustrative are the

simultaneous® counting of steps taken
simultaneous* counting of steps on stairs,

which can be
real or symbolised,
in generd,
simultaneous* counting of rhythmic events.

A usud “mistake’ in counting steps (taken, or of Stairs) is taking the zeroeth
for one. Possibly

in counting rhythmic events, counting something
arises or gets experienced: rhythmic movements of the forefinger. Whereas

correct Smultaneous* counting of a rhythmic event (for instance the
rhythmic counting process) is a matter of coordination,
correct counting out is a matter of organisation,

that is,
organisation by setting apart or marking the counted objects,
or if the objects to be counted cannot be manipulated,

organisation by means of present structures,

or by structuring.
By thisorganisation

skipping and multiple counting
must be prevented.

It is a well-known experience with children a a certain stage that, when

asked “how many?’ they count, say, 1, 2, 3,4, 5, without answering the ques-
tion properly, and count anew if the question is repeated. So they do not

condder the counting result as that characterigtic of the st which we cdl its
number. The step to this can perhaps be provoked by replacing the question

how many are they?

* That is, smultaneoudly with the acts performed.
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with the task
give me ... beads

from a s of beads. If now the child reacts by counting, he is compeled to
interpret the counting result as the number of beads. Continuing this line, one
can charge the child with

picking m beads out of a st of n beads, with m <r,m=n,m>n,
andinthisway

according to the feasihility try to have the cardinal order relation con-
dituted.

The srongest gimulus to condtituting numerosity number in this context is
gtructura isomorphisms: if | have successfully counted the eyes of six persons,
| do not need to count anew their ears. The indght is created that

isomorphicaly structured sets possess isomorphic counting structures,
hence

isomorphicaly structured setslead to the same counting result,
counting a part leads to a smaller counting result.

This insght can be generdised while abstracting from counting: without count-
ing, the child draws the conclusion that a group of people have as many ears
aseyes. Thisleads to the ingght that

isomorphic structures have dready potentially isomorphic counting
structures

and to the possibility of asserting that

on account of structural isomorphism of sets, they have as many eements,
on account of inclusion one st has fewer elements.

If three sets are consdered where the first is isomorphic with the second by
another kind of structure than with the third, it can till be concluded that the
second and the third have equally many elements. It can by replacing structures
of a different kind by counting structures, thus of the same kind. From here the

use of transitivity of “equally many” and “less than”

can develop.
By this course one can imagine the numerosity number constituted as a
mental object: darting from the counting number and diminating it while

preserving its possibility.
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4.17. The Sructure of the Counting System

The mathematical structure of the counting system is the successor relation with
well-known properties that dlow induction and, consequently, the defintion of
N. But in genetic and didactic phenomenology the counting system is endowed
with a richer structure, from which N is derived by a theoretic impoverishment.

First of al, geneticaly: Acquiring numbers is, in general, preceded by ac-
quiring numerals, which as a system is — with a few exceptions at the start
—well-structured by tens, hundreds, thousands, and so on, and most often in its
acquisition is integrated with the total vocabulary. But however this process of
acquisition may run, there can be no doubt that acquiring the mathematical
structure of N is possible only by way of acquiring the stronger structure with
which N is endowed, the decimal system — from counting forwards and back-
wards to the numerical operations. In true mathematics the decima structure
of N does not count and, as is easlly understood, for good reason. There are
no good reasons, however, why no atention is being paid in developmenta
research, as far as | know, to the decima structure. There is a strong tendency
to read the developmental — and sometimes even the didactical — phases from
the structure of mathematical science, and by preference from one particular
structure of science, Bourbaki’'s system. Some developmental psychologists,
such as Piaget, have even raised this paralelism to the rank of a principle. With
regard to the organisation of mathematical subject matter, this view has been
expressed, if not earlier, then anyway with new aplomb, at Royaumont (1959)
and Dubrovnik (1960). For very good reasons the decima structure of N does
not appear in any scientific structure of mathematics except as a curiosity that
is just mentioned. In such genetic or didactic research as is steered or even
dominated by the idea of structure of science, there is no inducement to pay
attention to the stronger structure of N. This explains the lack of interest |
dluded to earlier. Yet whoever is influenced by genetica or didactica phe-
nomenology feels the stronger structure of N as a conditio sine qua non and as
a new argument against the idea that spontaneous and guided development are
determined by the structure of science.

One additional remark: Even if the decimal structure is rejected asirrelevant
within the scientific structure of mathematics, one cannot bypass the fact that
the principle of building fixed numbers of units to introduce higher units should
certainly fit somewhere into the scientific structure (cf. equipartition by map-
pings and relations in 3.22 and 3.25). It is rather the restriction to one system
of bundling that looks unmathematical. Yet even structuring by bundlesisin
general neglected in developmental research.

In the decimal structure of N two components can be distinguished,

the (decimd) bundling,
the podtiond arrangement of the bundles.

Both have been known from olden times to dl civilisations, the oldest included
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— the Sumerian—Akkadian and the Egyptian. The sexagesmality of cuneiform
texts was a sophistication of professiona arithmetic, artificialy imposed upon
an originally decima system, but anyway it included the positional idea. In
Egyptian arithmetic we find the decimal bundling, but the positiond idea
seems lacking. There can be no doubt, however, that operations on numbers,
in particular on big ones, were performed from olden times on some kind of
abacus, and however an abacus is constructed, it certainly embodies the pos-
tiona idea. On cuneiform tablets the numbers were dso postionaly written.
It is the decima digit system that is of more recent date, but it was preceded by
a decimd abacus, which was gradudly superseded by the decimal digit system
when writing material became widely available. Unfortunately — onewould add
from adidactical point of view.

For the mathematical layman the decima counting structure is an indispen
sable element of the counting system. | doubt whether the man in the street
ever disregards the decimal structure, being an inessential element of the count-
ing system — not until true mathematicsis at issue is there any need for such an
elimination. Quite a few know that other counting systems will dso do and that,
for instance, computers work in the binary system. This knowledge, however,
is most often not deeply rooted or it is directed in the wrong way: the impression
can arise that some number system — in whatever base — isrequired; that sucha
supplementary structure as decimality is indispensable. The large part decimality
plays in arithmetic puzzles indicates another mentality than is appreciated in
mathematics.

From a practical rather than theoretic perspective the extra structure of N,
decimdity, is valuable and even indispensable. This holds for the didactica
phenomenological perspective too. The extra structure is a powerful means to
actually master the bleak successor structure of N. One comes to grips with
the counting system by decimalising it, or at least one imagines that one does;
and with regard to mere routine, it is certainly true. Performing the arithmetical
operations and estimating “orders of magnitudes’ is organised by means of
the decimality. Not until mathematics is carried on to a more advanced level,
do the idea and the need arise to eiminate the particular number system from
the phenomena structure of the counting system in order to get the truly
mathematical N.

It is well known how in counting large quantities of objects of the same
kind, decimdity is concretised: objects are laid down in rows of ten, which are
combined in squares of ten by ten, to systems of tens of such squares, and 0
on. Or towers of ten or one hundred such objects are built, for instance, when
counting money. This principle is dso systematised by such material as blocks,
rods of ten blocks, plates of ten rods, blocks of ten plates.

Such materia concretises the bundling only — it neglects the positiona order.
This latter component is fully embodied by the abacus, an old instrument
rediscovered in Western Europe. Whereas this kind of instrument maintained
itself in Russa and the Far Eadt, it disappeared in the Western world after the
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rise of Indian—Arabian arithmetic—strangely enough aso ininstruction, which
relied on the counting frame with 100 beads, each of the same value. As a
didactic tool the abacus enjoys an increasing popularity. If | am not mistaken,
its reintroduction was due to Maria Montessori.

Unlike the Eastern abacus with its intermediate units of 5, 50, and so on,
our ingtructional abacus is purely decimal, as is the Russian one. In the Russian
abacus the units, tens, hundreds, ... follow up each other in the verticd
direction. Our instructional abacus, however, follows the order of the written
postiona system. It is fabricated with 10 or 20 beads on aline or a bow; if
it is 20, then 10 are of one colour and 10 are of another. Another variant is the
pictorial abacus which alows for an arbitrary number of chips between vertical
lines. On such abaci numbers admit of a multiplicity of representations; in the
standard representation, corresponding to the digitd numeral, the number of
beads or chips used is minimal.

A variant of the decimad abacus is the so-caled minicomputer, where in each
position the numbers from 0 to 10 are represented according to the binary
system.

After these technical details on the abacus and before deding with its use
in arithmetical practice, | will briefly tackle a question of principle. When
| mentioned how calculating on the abacus was superseded by written column
arithmetic, | heaved the sigh “unfortunately”. Why “unfortunately”? Is it not
a blessng we would be slly to waive writing numbers as one likesit, beside and
below each other when compared with working in the shackles of the abacus,
however flexibly it might be constructed and used?

Yes, it is a blessing for those who can afford it. Writing the digits neatly
below each other is the precondition for the functioning of the positiona
system, and by “neatly” | mean not only a caligraphic fact but mentally observ-
ing the postiona idea. And this holds for decimal fractions, too. A pupil who
calculates excellently in N and getsinto difficulties with decima fractions proves
that he has not yet grasped the essentids of the positiond system.

The abacus, in whatever form, compes the learner to reflect again and
again not only on what units, tens, hundreds, ... are, but dso on what tenths,
hundredths, ... are, and how the ones arise from the others. It looks like a
shackle — caculating on the abacus. Indeed it is for those who have outgrown
it. But the chance to outgrow it should be granted to anyone who has no cther
chance, who cannot do without it, who is otherwiseleft with the choice number
chaos.

4.18. Invariances With Two or More Sets

In Section 4.15 aspects of conservation were discussed with regard to a single
set. Numerosity, however, does not become an essentid characteristic and
instrument until more sets are compared.

Recdl the enumeration in 3.18 of activities which together might represent
the congtitution of numerosity number:
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Eliminating the structuring component from structures with the same
substratum in order to arrive at substratum sets,

and in this connection transforming the inclusion relation into an order
relation (“less’ ingtead of “contained in™).

Using isomorphisms of structures with different substratum to compare
different sets.

Using transitivity of equality and order (of numerosity number).

The structures meant here can be present in the materid in order to be
discovered and used afterwards, or they can dso be imposed intentionally by
the user. The structure most usualy imposed in this context on unstructured
or insufficiently structured setsis the counting structure, though as the examples
of Sections 3.18-30 show it is certainly not the only one, and often it is opera-
tional only through a one-, two-, or three-dimensiona order structure or some
other structure which is needed to make systematic counting feasible.

In Section 4.16 | sketched how the dimination of the counting structure
might develop; the eimination could be triggered by other, more striking struc-
tures that supersede the counting structure — as an example | took the relation
between numbers of eyes and ears when determining them for a group of people.

My phenomenologjcal sketch of the congtitution of numerosity number via
the counting number alows for variants and short cuts. In principle it is possible,
and though it seems exceptional, in fact it happens, that numerosity number
isnot congtituted via counting number but precedes it.

In both cases the invariance of the numerosity number under one-to-one
mappings, though mathematically the most prominent and even constituting
property of the concept of cardinality, isan a posteriori phenomenon if compared
with the invariance under isomorphism of structures, and the same holds for
invariance of the order as established by the cardinas. Condtitution of those
invariances requires that structures be impoverished to sets and isomorphisms
to one-to-one mappings. The invariance principles to be acquired are: if the
mapping f of A inBis

one-to-one, onto then #4 = #B
one-to-one, not onto, then #4 < #B,
onto, not one-to-one, then #4 > #B,

and conversely,

if #4 = #B and f one-to-one, then f upon,
if #4 = #B and f upon, then f one-to-one,
if #4 <#B, then f not onto

if #4 > #B, then f not one-to-one.

Modern textbooks often teach and test such properties by means of pairs of
Venn diagrams. Such exercises are fase concretisations which are likely to
block the mental congtitution of these properties, or a least to thwart their
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application. Recognising relevant sets and mappingsis the very thing that matters
in applications. | have concluded this from experiments with the drawer (or
Dirichlet) principle, which, indeed, is an efficient test of the last property |
mentioned above.

4.19. Comparing Cardinals Numbers by Estimate

Earlier | indicated the part played in the constitution of cardinals by indefinite
numerals such as “many” and “few”. As far as they express rough estimates,
“more” and “less’ are of the same character, if they mean “many more” and
“much less’.

The comparison by estimate isbased on a — most often unconsciously handled
— pattern, which shdl be made explicit with a view to didactics. Two sets of
objects, A andB, are compared

while A, at least as densely distributed as B,
covers a larger space than B,

or

while A, more densely distributed than B,
covers the same space as B,

A conflict arises if

A, more densdly distributed than B,
covers less gpace than B.

When gpplying this pattern,
the spaces covered by the sets are globally, at sight, compared
whereas
the dengities are localy compared
and
the homogeneity of the distribution is globdly judged.
A specid case isthe following:

A and B are densely packed within equal paces
whereas the particular objects of A cover less space than those of B.

A variant:

The spaces covered by A and B are replaced setsA' and B'
respectively, which are known to have the same number of elements
or the one is known to have more than the other.

Ancther variant:
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The spaces are replaced with time intervals
and the elements of A and B are events.

In general, the principle explained here can be formulated as follows:

Condder a finite st X with dl its subsets. Xisinternaly or externaly struc-
tured in such a way that subsets apart from their number # possessacertain
character k which can be described extensively; that is, by means of a magnitude
that behaves additively under composition:

k(Y,eY,)=k(Y,) +k(Y,).

Thisis caled a k-homogeneous set.
Indeed if k is thought to be a

volume (area, length),
weight,
duration,

thus k(Y) the

volume (area, length) covered by Y,
weight of the combined members of Y,
duration of the combined events of Y,

then
8(Y)=#Y [k(Y)
is the number of members of Y per unit of

volume (area, length),
weight,
time,

independently of Y (€ X), which justifies the expression “ k-homogeneous set”.
8(X)=#X [ k(X)
is what was cdled
density
in the introductory examples. Here, too, we can speak of a distribution density
with respect to k:
8(X)=#X [ k(X).

Let A and B now be two k-homogeneous sets. The principle we wish to
formulate, is

ifk(4)>k(B)and §(4) 2 §(B), then #4 > #B,
if k(4)2 k(B) and §(4) > §(B), then #d4 > #B,



96 CHAPTER 4

and the conflict is expressed by
kA >k@B) and §(4)<8(B).

The k-inequalities in the premisses can globaly be tested, the -inequalities
locally and perhaps by samples.
The assertions based on applying this principle can be strengthened, such as

more than the double,
more than half,

and so0 on, if the estimations of k and 6 alow it —an extension we shal consider
when dealing with ratio and proportion (Chapter VI).

4,20-28. The Constitution of Addition as a Mental Act

4.20. For many years it was a habit to indicate the operation of set union by
a plusdgn —thus4 + B instead of 4 U B —and even now there are authors, in
particular in measure theory, who stick to that notation. It happened first in
topologica agebra that one abandoned the old notation: in additive structures
oneneeded 4 + B to indicate the set of @ + b witha€ 4and b €B.

The plus sign for the union formation was of course inspired by the dose
connection between union and sum, witnessed by

#AUB)=#4+#B (fANB=0)

and in fact used to define addition. If m and n are to be added, one provides
onesdf withtwo disjunct sets A and B of which m and n are the cardina numbers

m=#4, n=#B, ANB=0,
forms their union and puts
m+n=#(A4A UB).

It is eesly shown that the result does not depend on the choice of A and B,
that is, if

#4=#4', #B=#B', A'NB' =0,
then
#(AUB)=#(4'UB').

At the lowest level this then is the way to perform addition; the learner who has
to add m and n creates the required sets of fingers, beads, strokes or whatever.

But it can happen as well that the sets are given in advance: he is asked to
add not m and n, but the numbers of objects presented in some way, say

5 cars and 3 cars together,

where the cars can be rea cars, five on this sSde of the road and three on the
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other side, or drawn, or suggested by a story, or some of the cars may be redlised
in one way and the others in another. Well, if their redlity is not palpable enough,
the caculator can provide himsaf with substitutes A' and B', equivalent to the
sets A and B, which he is dble to take together; A' andB' can be sets of fingers,
or beads, or strokes. In dl these cases the numbers to be added are clearly
recognisable as cardinds of sets, and their addition as reflecting the union
operation, even though the sets themselves may be inaccessble, and uniting
them cannot actualy be performed.

4.21. Problemsdo not arise until

the terms to be added are not plainly recognisable as cardina numbers of
Sets

or

the addition is not plainly recognisable as reflecting the union operation of
sets.

5 marblesand 3 marbles

the related sets and the operation are clearly recognisable. They are less s0 in
the caze

John has 5 marbles, while Pete has 3 more, how many does he have?

Pete's st is not obtained by taking two given sets together. One should rather
consider the imaginary sat of Pete's marbles split into two sets, one st of
marbles equivalent with John's and another st of the 3 marbles he has more
than John, which can be done in many ways. The formula

#(AUB)=#4 + #B
is again being applied, though with 4 U B prescribed and to be split into A and
B

. Another type of less dear recognisability of the related setsis
John has 5 marbles, yesterday he had 3 more, how many did he have?

Here a “log” set must be mentally reconstructed in order to be united with a
present one.
In

John won three marbles today, how many more does he have than he had
yesterday?

nothing is redly to be added, though an addition is suggested by “won” and
“more’, and the dtudtion is even more troubled by the foggy st of John's
marbles yesterday. Though looking more complicated,
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Yesterday John won 5 marbles and today 3 marbles, how many more
does he have than he had yesterday?

is probably an easier case, ance one has redly things to add. But what about
replacing “won” with “lost” and “more” with “fewer”?

This kind of example could be extended with many more where the sets
are somehow recognisable athough the operation is harder to identify — in
particular, as a consequence of mideading linguistic cues, such asin

John has lost three marbles, heill has 5, how many did he have originally?

4.22. This stock of examples can be multiplied ad lib., but we restrict ourself
to this choice in order to Sgna another type of addition problems in which it
can be properly sad that no sets are distinguishable, and constructing sets from
the objects occurring in the problem is perhaps less desirable. In

5 steps (of stairs) and 3 steps,
5 daysand 3 days,

5kmand 3 km,

5 florins and 3 florins,

5 timesand 3 times,

one can hardly spesk of sets consisting of 5 and 3 elements, respectively. Whereas
in the former group of examples the sets are till constructible in the domain of
the objects, in the latter it is hard, if not impossible. Images that are to represent
5 or 3 marbles can be quite redlistic, for instance, in a Venn diagram, but an
explanation that 5 or 3 chips should be understood as being 5 or 3 days is
nothing more than a verbalism.

In such examples new problems of recognition can be created by the way in
which the addition is suggested:

John is 5 years, how old will he be 3 years from now?
Today is 5 January, what date will it be 3 days from now?
Itis5 o'clock, what will the time be 3 hours from now?

with dl kind of variations which can arise, for instance, from a change of
perspective.

4.23. How is the arithmetical knowledge about addition that was acquired
by uniting sets transferred didactically to this kind of problem? Possibly the
numerica performance of the act of addition is Smply suggested on the basis
of the genuine set operation via the abstracted arithmetical problem 5 + 3.This
is certainly the case with such patterns as 5 times and 3 times, where every
indication is missing concerning what should be present, happening, done,
taken three times. Though originaly the numbers were cardinals of sets, and
operations with numbers were operations with cardinas based on operations
with sets, in these problems they are stripped of dl substance in order to become
numerals and algorithmic operations on numerals (“computing number”).
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It is not astonishing that such didactica procedures, if gpplied again and again,
create hosts of underachievers: children that fail on any kind of word problem.
According to this didactics the transition from

5 marbles and 3 marbles
to
5 daysand 3 days
is performed via
5+3,

thus the transition occurs agorithmicaly and without any experience asto what
adding days can readly mean. How can and should this be improved?

4.24. Earlier | drew attention to how closdly numerosity and counting number
are interwoven. 5 + 3 is defined cardinaly, but from olden times it has been
caculated ordinarily. Set theory fanatics tried to fight this didacticdly with
Venn diagrams, but fortunately with little success thanks to the natural inclina-
tion to operate by counting. The result of 5 + 3is obtained by counting 3 steps
forth from 5 onwards; to the 5 beads on the abacus one adds 3 — one, two,
three — both terms aswell asthe sum being defined by concrete sets. Or: starting
with the mental 5, one countson — 6, 7, 8 — while thumb, forefinger,middle-
finger, one after the other, are raised in order to steer the deployment of the
second summand. Or: the same, without the fingers, while the activity of adding
is steered by rhythmic or visua images.

One could teach children the elementary additions in the same way as the
tables of multiplication are often taught, by intentional memorising. Perhaps
here and there it really happens thisway, but certainly not as arule. Memorising
addition is unintentional; the addition tables are learned by performing additions
again and again. Yet memorising is not the sole aim of performing the operations.
By the process of adding the addition is experienced as meaningful and under-
stood in such away that, if needed, it can be made explicit. By this meaningful
activity on summands more complex additions are prepared where the summands
and the sum are not represented by sets. In brief, by the activity of adding the
addition is constituted as amental activity.

Let us review our examples. 5 stepsand 3 steps — with feet on the fifth step,
it goeson — one, two, three mentally — to the sixth, seventh, eighth — counted
aoud. 5 days and 3 days — turn three days (pages) further in the calendar.
5 km and 3 km - the signpost shows 5 km to the point you came from and
3 km to the point you are going to, and tells you to count from point 5 further
to point 8. To the 5 florins, represented by a banknote or by 2 coins of 22
florins, three florins are added — 6,7,8 — which are mentally counted as 1,2,
3.
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4.25. These examples are distinguished from the former ones not only with
regard to the materialisation but dso structurally. One is no longer taking the
union of two unstructured sets. We are not faced, as in the case of the marbles,
with five and three disconnected steps, days, km, florins, times, which are
raked together. They are objects that follow each other in space or time, not as
elements of a set but as paces on a road, in a process that in turn suggests and
perhaps elicits a counting process.

| aready <tated that counting processes are embedded in time and possibly
adso in space. By pronouncing the number, by indicating objects, points in
time and space are isolated in the continuous medium, and this can be done
more or less sharply — a string of beads the sze of a dove egg or a mustard
seed, densely threaded or loosdly spread. Counting queuing cars — they follow
eech other at a distance and are counted one by one. Counting the wagons of
a freight train, a continuous stream articulated by the buffers — the rear buffers,
of course, because with the rear buffer, the ordina number of the wagon is
“accomplished”, asthe odometer of a car accomplishes the kilometers. Counting
when playing at hide-and-seek — numerals are stretched over an interval, and
after 100 it is. | am coming.

One counts marbles, but likewise intervals. pronouncing 21 such that it takes
a second. It depends on the intention: counting spetial or temporal phenomena
or articulating the spatial or temporal stream. Of course, one can maintain that
mathematicaly it is dl the same: the disconnected marbles, the beads loosdy
or tightly on the string, the sequences of spatia or temporal intervals— dl of
them are sets, dl have cardina numbers, and adding them is based on taking the
union. This is true and it proves how universal mathematical concepts are. If
you assign to each kilometer of a trip its end, to each year the stroke of the
clock that completes it, to each m*® of water passing the bridge of the Meuse
its last drop, to each ton of flour streaming out of the mill its last particle, you
obtain a mapping where the successve intervals are mapped on a sequence of
points — a one-to-one mapping of something that looks continuous but by this
mapping is cut into a discrete looking sequence of dices. This then is the mathe-
matical justification of a procedure by which natural numbers are used to count
in a continuous medium; but though it is mathematics it is nothing but the
unconscious background made explicit.

How old are you? “Four” the child says, raising four fingers and knowing
that at some precise moment a fifth will be added. Before the natural number
is constituted as a characteristic of setsin the discrete realm, it is aready applied
in the continuous one — that is, to magnitudes. The examples | mentioned —
length, time, monetary value — are paradigmatic. Continuous climbing is articu-
lated by steps, the stream of time by the torn-off pages of the calendar, the
road by km-posts, money by coins and notes, “so many times’ means so many
times the same — it is these articulaions that are counted. Intraditional teaching,
magnitudes are delayed until the children are ready to learn common and
decimd fractions. This reservetion isjustified by nothing but a pseudo-didactica
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systematism. The first step in anaysing a magnitude, where measuring the magni-
tude is articulated by the natural multiples of aunit, is possible and desirable a
an early age; counting can and must immediately be transferred from discrete
quantities, represented by sets, to magnitudes. Modern textbooks start measuring
much earlier than tradition dlows, but unfortunately this kind of measuring is
not yet sufficiently integrated with the operations on natural numbers.

4.26. The device beyond praise that visudises magnitudes and at the same time
the natural numbers articulating them is the number ling, where initialy only
the natural numbers are individualised and named. In the didactics of secondary
instruction the number line has been accepted, thoughit is often Hill imperfectly
and inexpertly exploited; in primary education it makes progresslittle by little.
The progress is dowed down on the one hand by Venn diagrams, on the other
hand by rudimentary materid like Cuisinaire rods. It seems to me a disadvantage
of the number line that it is S0 easly drawn and that it cannot be sold together
with the textbook as teaching material.

The Cuisnaire rods — which in fact have come down from Frobel — were,
once introduced, a large step forward: a trandation of natural numbers into
lengths, and of operations on natural numbers into operations on lengths.
The articulations in the continuous stream are being concretised, the intervals
coagulated and embodied in coloured rods. The lengths are torn from ther
context “length”; numbers is the peak of what the rods can represent — no
other magnitudes.

The number line eclipses the Cuisinaire rods in many respects. The virtual
infinity is better expressed by the number line. The number line knows no
compulsory scae; number lines on different scdes — on the blackboard and
on paper — are immediately identified, notwithstanding their incongruency. And
what is mogt important: in manupulating Cuisinaire rods the route from the
visud to the menta realm is diverted by an irrelevant motorism. Later we shdl
consder what relevant motorism is and how it gpplies to working on the number
line.

Does it look strange that | deal with these matters under the title “The
condtitution of addition as a mental act’? Counting and adding are closdly
knit in the condtitution of number. Counting is again and again adding one,
and additions are performed by counting. This then characterises the arithmetic
of the number line and its didactics which we are engaged in.

The number x stands on the number line where X is accomplished. What x?

x cm of the ruler,

X km of the road,

X carsin arow,

X books on a stack,

X pages of abook (tens only)
X ticks of a clock,
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x hours, days, years (on the time axis),
X grams or kilograms,
x cc of the measuring glass.

Yes, accomplished. The ruler or road is accomplished by scanning or pacing it
with real or imaginary fingers or feet, the queue runs out, the books are fetched
from and put into the stacks, the book is leafed through to page x, the timeis
accomplished and the hand of the clock or the spring balance accomplishes the
interval x. The number x stands where it is “full”. | can move or jump to the
point. And if it is ajump it is again pictured in a continuous manner by an
arrow, perhaps with a “+ x™ on it. The jJump can be composed or thought to
be composed from little jumps. The jump can be done from every starting
point, pictured by the same arrow “+ x”, and this then pictures the addition,
in one blow, or dissolved in little jumps. The intermediatejumps have been made
explicit or just blurred. The number line can bear numbers at the tens only —
like a ruler — with intermediate strokes for the units, or at the fifties — like the
measuring glass — with intermediate strokes for the tens, or only a the hundreds
and thousands, like the kilometers dong the road. In between, interpolation
takes over: the 175 should be a a certain spot between 100 and 200 — second
graders are able to locdise it. And finaly there is the line (or path) with no
number or marks at al, except an origin.

How far is it from here to there on the number line? The little steps are
counted. But you can dso take the “from here to there” between your thumb
and forefinger, carry it back to 0, and read it off. Adding n to m can be
performed by counting but it can dso be done in one blow: the piece that
is “accomplished” at n is taken between the fingertips and carried over to m
— between the fingertips or on a ruler or a strip. Addition is being performed
geometrically, rather than by counting. But that means that you can dispense
with numbers on the number line. The number line is mirroring a magnitude,
and the geometrical shift on the number line mirrors addition for this magnitude,
asit does subtraction.

This then is another way to have addition begin, with magnitudes rather than
with marbles, but with magnitudes that are visudised and bound to the number
line — the length on a ruler, the volume on the scde of the measuring glass, the
weight on the scde of the spring balance, and (somewhat harder) the time on
the time axis. Davydov* has shown how adding and subtracting with magnitudes
— length, volume — can didactically precede the numerical operations in order
to develop and support them. | tried it with a boy (5; 6) whose arithmetic
abilities were negligible; he was able to perform meaningful operations on
length, volume, and, with the spring balance, on weight, up to fair understanding
of Archimedes' principle.**

* Cp. Hans Freudenthal, ‘Soviet Research on Teaching Algebra a the Lower Grades of
Elementary School’, Educ. Sud. in Math. 5 (1974), pp. 391-412.

** ‘Badtiaan’s Experiments on Archimedes Principle’, Educ. Sud. in Math. 8 (1977), pp.
3-16.
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Well, let it be true that the title of the present chapter does not seem to
justify the present subject, which is magnitudes; then, however, the title of the
present section, which is about addition, does justify it. From the beginning
addition should be of a broader range than operating on natural numbers. The
natural numbers are characteristics of discrete sets, adding them is rooted in
throwing together such sets. The set theory medium of magnitudes is continuity,
and adding there means composing. The universal model of magnitudes is the
ray, primarily structured not by numbers but by congruent displacement,
corresponding to addition of magnitudes. Not until a unit is chosen for the
magnitude and correspondingly a “1" is placed at the ray, are addition of
magnitudes and addition of numbers related to each other, then the ray is
articulated by points corresponding to the natural numbers to become the
number ray, and cardinal addition is translated into set theory addition.

4.27. With the idea of natural numbers on the number line we are as far from
their cardind origin as geometrical addition is from uniting sets. In this anaysis
the connection between numerosity and measuring number has been made
didactically via the counting number and magnitudes. Earlier | explained a short
cut: dividing the ray into succeeding congruent intervals and interpreting number
as the cardind of a set, to wit, of subsequent intervals. Anyway from the start
onwards the natural number obtrudes itself on the learner in dl its aspects. Only
a system fanatic could be offended by this challenge. It is a fact that natural
number has many aspects, one of which is its use and its indispensability as a
measuring tool, not only in applications of arithmetic but dso on behdf of its
didactics.

Problems arise around addition (I have aready elaborated on this theme) as
soon as the summands to be added and the operation of addition are not plainly
recognisable as cardinals of sets and their union, and attempts a a set interpreta-
tion are artificial or obnoxious. For this reason, as | said, the constitution of
addition and learning to add should be more broadly oriented towards adding
magnitudes represented on a number line, bearing initidly the natural numbers
only. Neither a recourse to sets nor agorithms that exploit verbal cues can be
of any help if such problems are to be solved. The Venn diagram visudisation
of adding is too narrow, and algorithmising prematurely involves the risk of
awrong perspective that may influence the mind in away obnoxious to mathe-
matics. It might be wholesome to first understand addition broadly and to
visudlise it in a way that can be considered as definitive from a mathematical
viewpoint.

This suggests that not only adding but even counting should be accompanied
by activities on the number line. One more marble from the bag to be counted
is accompanied by one block joining the train of blocks and one segment on the
number line. Counting by estimate is accompanied by vague indications on the
number line. “More€” and “less’ mean directions on the number ling; “this
more” and “this less’ make more precise how much to proceed in one direction
or the other. Two paralel number lines, used for John and Pete: the marbles
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John wins from Pete are transferred as a line segment from the Pete line to the
John line. Transferring contents and weights from one receptacle to another is
smilarly represented. Concretely or symbolicdly adding numbers given by
objects or a the fingers or the abacus beads, or by taliesis one of the accesses,
which certainly should not be neglected, but it is not the only one. The other,
broader one is via magnitudes and the number line.

4.28. A few lines above | stamped the visudisation of the addition on the
number line as definitive. This is true as long as | restrict myself to N. The
extension to Z seems artificia at an elementary level. A more natural extension
istowardstwo dimensions, vector additionin R2 or in the lattice Z? ,which then
includes the extension to Z. This addition would be introduced geometrically,
by parallel shifts of vectors, in order to be expressed arithmeticaly afterwards.
This subject can lead into a field of free activities which as motivations may
influence the more regimented, properly arithmetical, activities. Later (in
Chapter 11) we will reconsider these questions.

4.29. The Additive Sructure of N

The additive structure of N includes morethan the act of adding. It is, asit were,
the whole complex of relations

a+b=c,
possibly aso expressed as
c—b=a (forb<e)
and supplemented by

at+b+c=d,
atb=d-c,

and dl other relations one would like to consider in this context.
On ahigher levd it includes experience, and on adill higher one formulated
knowledge, of such properties as are

commutativity,

associativity,

equivalence of a+b=candc - b =a,
and many more properties of thiskind.

This structure grows as the learner explores N, but fundamental properties
such as the ones just mentioned can be experienced fully and clearly and even
formulated within a quite restricted part of N.

The structure of N is partly accessble to memorising; beyond this, it is
obtained and analysed by means of the algorithms of the decimad system, which
will be dealt with |ater in the present chapter.
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However, the relations consdered 0 far yield an insufficient grasp of the
structure of N. For instance, the relation

atb=c
can be structured by prescribing ¢ and asking for the totality of solutions Fa, 51,
the ligt of splittings
8 7 6 5 4 3 0

2 1
8=+
0 1 2 3 4 5 6 7 8

which exhibits a striking structure of increasing and descreasing sequences and
a centra symmetry. Of course, splittings are dso useful for the agorithm of
passing over the tens when adding, but there is more to it. A structure like the
one exhibited by this lig invites questions of “why?’, which with their answers
help one to understand the additive structure of N more profoundly. One lig
like this is not enough; they are available for each c. Interpreted in two dimen-
sons, in the lattice, these lists become point sets with aremarkable interior and
exterior structure.
Other ligsare created if

a+b=c
isviewed with b fixed as a condition for a, ¢, such asin

3 4 5
0 1 2

again with a driking structure, which asks for explanaion. What characterises
these pairs of points, when viewed on the number line?

The order relation, viewed in the context of addition, dso belongs to the
structure of N. It is obvious that adding more yields more, and subtracting
more yields less, but it is not o obviouswhat this means for solving inequalities
and for other applications; for instance, that to solve

x+4<10

one is advised start with the largest solution. Much insight into the structure of
N is required to solve

x +y<10.
Other additive structuresin N are arithmetical sequences
1,4,7,10,...

corresponding to jump sequences on the number line. Where do two sequences
of thiskind, the preceding and

2,6,10,14,...,
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meet each other? The question is easily answered but to understand it requires
the multiplicative structure of N.

The fidd of hundred is a structure in N, and in this field the arithmetic
sequences show specia structures. The table of addition is dso a structure in
N, symmetric with respect to the diagonal, and a chessboard distribution of even
and odd numbers — why?

Properties of such structures can be traced, understood, explained. Properties
of N can be known and applied; for instance commutativity to add the smaler
to the larger number conveniently, and associativity to simplify additions
agorithmicdly — for instance,by completing tens.

4.30. The Constitution of Subtraction as a Mental Act

Discussing subtraction after addition does not aim at a didactical separation, and
certainly not at a successon in the genetic and didactic process. In dl contexts
where addition is didacticaly offered, subtraction is implicitly present in order
to be made equally explicit.

Formally,

subtraction results as the converse of addition,
and in fact this aspect of subtraction should not be neglected,
8 —3=5 becaueof 5+3=8

is reasoning by which each subtraction can be reduced to an addition, which
might be known in advance by memorising. In the case of division as the converse
of multiplication, this is indeed the way to solve elementary problems after
the tables of multiplication have been memorised. Subtraction is dealt with
differently, and there are reasonswhy it is s0. The inference pattern of inverting
an operation is probably less familiar to asix-year old than to an eight-year old;
but the main reason seems to be that subtraction is as concrete as addition,
whereas division is much less so than multiplication.

In the domain of objects, subtraction means taking away, as addition means
annexing. The older arithmetic books had great difficulty when picturing sub-
traction. Venn diagrammatici, at a loss what to do with subtraction, invented
the strangest aberrations. Meanwhile new inventions bear witness to the fact
that a fresh spirit has befallen developers. rigidity and unifying dogmatics have
given away to a creative imagination of situations that suggest mental activities.
With regard to subtraction: withering flowers, birds flying up, dwarfs running
away, walls and towers breaking, and many more of this kind. The problem
suggested by the picture is often not uniquely determined. If a story is to be
told about the picture, it may be the style of

there were c,
b went away, c—-b=a
thus a were left;
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or

there were ¢,
awere |eft, c—a=b
thus b had gone;
but dso
a are left
b runs away c=a+b

that is c together.

Yet thislack of uniquenessis not at al a didactic shortcoming.

The objects can be pictured in disorder or in a row; the objects to be taken
away can be on one side of the row, on the other, or criss-crossed in between.
But explicit taking away suffices as little for the mental constitution of subtrac-
tion as uniting explicitly given sets suffices for addition. “Which ones are more,
and how many more?’ In order to answer this question about a picture with
two kinds of objects, indirect taking away is required: one set is diminished by
asubset equivaent to the other.

The numerosity aspect suffices as little for subtraction as for addition to
mentally congtitute the operation. | desist from repeating for subtraction the
arguments | displayed in the case of addition. Subtractions too should be con-
stituted more broadly, with magnitudes geometricaly interpreted on the number
line.

In numerical subtractions — on the abacus, with tallies, on the number line,
or mentally —one observestwo methods,

taking away e the start,
taking away at the end,

and counting the remainder. “Among 8 children, 3 girls, how many boys?’ can
be answered by “from 4 upto 8" and counting these numbers “one, two, three,
four, five” on the fingers. Or the three are taken away a the end: one away
is 7, another away is 6, another one away is 5, and meanwhile thumb, forefinger,
and middle finger have been raised to control the process. Children learn quickly
which method is more useful in each particular case if the subtrahend is smaller
than half the minuend it is taken away a the end, otherwise at the start.

With geometrical subtractions on the number line both methods can apply:
the subtrahend can be congruently cut away at the start or at the end of the
minuend, and the remainder is measured again.

The geometrical concreteness of the number line is particularly useful in
understanding problems like

a-—...=¢
...—b=c
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4.31. The Constitution of Multiplication as a Mental Act

Multiplicative terms like “double” and “times’ precede multiplication as an
arithmetical operation.

| told you three times,

walk three times up and down,

the clock struck three times,

when the (minute-) hand has gone around three times,
you must deep three more times, then it is your birthday.

Itis
three times doing, undergoing, experiencing, awaiting

something. And then in smple additions, before multiplication is on the program,
it can be

saizing three times four marbles
or smply
three times four marbles,
and this means
four marbles and four marbles and four marbles.
No operation — not even addition and subtraction — offers itsef as naturally
and is understood as spontaneously as multiplication.

Daphne (5; 1) is asked: “How many prongs does this fork have?’ Two forks, three forks,
four forks? Almost imperceptibly her fingers (the thumb excluded) tap on the table while
she is counting on. When, a “five forks’ she hesitates a bit, her dder Sster whispers “20”
to her grandmother, which makes Daphne angry.

Though this is not an explicit multiplication problem — the term “times’
does not occur — it shows the inductive origin of multiplication as repested
addition. This then is the way products are calculated and how tables are built.
Remembering our exposition on addition one should apply “so many times’
in magnitudes early. Indeed, thisis one of the functions of multiplication

3 kg, 3m, 3 km (travelling)

are 3 times as much and cost 3 timesasmuch as
1kg, 1m, 1 km;
3 km cycling

is 3 times as much and takes 3 times aslong as
1 km cycling;
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three of the same
weigh three times as much as
one;

and so on. Especidly on the number line multiplication as repeated addition can
be effective:

3logsreach 3timesasfar as 1 log,
with 3 steps (jumps) you go 3 times as far,
with 3 turns awhed covers 3 timesthe path.

Thisimpliesthat
3times4
can be redised by
3 rods, steps, jumps of 4,

subsequently performed on the number line.
So far multiplication was present as nothing but repeated addition. 3 rows of
4 marbles each may be placed

after each other;
with a change of perspective, they can be placed
in order below each other,
atwo-dimensiona arrangement, the
rectangle model
of multiplying. Fromtwo set A andBthe
set of pairs or product sat M4, B1
is formed. This restructuring reveas new aspects of the product. To calculate
m-n
one provides onesdf with two sets A, B such that
m=#4, n=#B,
formsthe st of pairs 4, B'1,and puts
m-n=#4,B1,

where the result does not depend on the specid choice of A, B.

Only by means of the rectangle model of the product do properties of multi-
plication become visble: commutativity, the rectangle is rotated a quarter of
a turns and distributivity, two rectangles of equal height (or width) moved side
by side. (Figures 20 and 21.)
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b+ =+ * ab=ba

Fig. 20.
(@a+b)=
¢
. =ac+bc
a b
Fig. 21.

In the preceding

st of pairs and the rectangle model were used to
restructure the set that is basic to the arithmetical product,

among other reasons in order to create insight into properties of multiplication.
The converse function is accomplished by the

set of pairs and the rectangle modd as structures discovered or introduced
in sets in order to calculate their numbers as products.

This function has been discussed extensively in Chapter 3.
The rectangle model leads in a natural way to

the area of the rectangle:

When one passes from the discrete number sequence to the number ling, the
discrete point-like beads are, as it were, condensed into unit rods; in two dimen-
dons they form unit square tablets, which together cover the rectangle. Its
area is expressed by unit squares after multiplying length by width as the —
implicit or explicit — arithmetical operation. The part played by the rectangle
model in multiplying magnitudes in general shal be discussed at another place.

All that has been said about the set of pairs and the rectangle model can be
extended to the

set of triples and plank model.
The latter shows

associativity
and leads to the

volume of the plank

expressed by unit cubes. Sets are
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structured as triples

on behalf of calculation of their cardinals.
In Chapter 3 we displayed other product sets with two or more factors, like
the

tree model, the roads model,

as showing product structures.

4.13a. The Role of Equipartition Sructures in Learning Processes on Behalf of
Multiplication

Among the models just mentioned, | forgot the one illustrated in Section 3.22
by
m baskets with n eggs each.

Not intentionally but as an oversight, which in Section 3.22 | imputed to others
as a mistake. | myself had overlooked what | had earlier signaed as a serious gap
in the whole didactical literature. Was | so overcome by set theory dogmatism
as to forget about my own ideas? Anyway, by observing learning processes |
recalled them.

Multiplication is, first of al, repeated addition and this operation can ef-
ficiently be structured by the set of pairs in the rectangle model —the set theory
product — in order, among other things, to calculate cardinalities as products.
This model, however, is insufficient. Not mathematically, since the eggsin each
basket can be numbered in order to impose on the set of eggs the stronger
structure of st of pairs with the elements

Tbasket, number of egg within its basket™.

It is didacticaly insufficient since the sophisticated mathematical restructuring
can hardly be expected to arise — spontaneously or perforce — in learning
processes or, if it arises at al, be made conscious in order to be made explicit
and, if need be, avallable.

Let us consider the following sequence of problems:

@ A picture representing seven baskets, each with six eggs. Question:

how many eggs?

(b) A picture representing seven baskets, with the legend: in each basket
there are Sx eggs. Question; how many eggs?

() The text: | have seven baskets; in each of them there are six eggs.
Question: how many eggs?

(©) Or more streamlined: 7 baskets, 6 eggs each;how many eggs?

It is a sequence leading from “materid” and “pictoria” to “mental” and
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“verba”, which, for that matter, can be lengthened and refined. The factual
situation which | observed in a traditional third grade, treating more modern
material, was that of problem (b).*

Pupil A counted — very fast — 1, 2, 3, 4, 5, 6, with a finger at the first basket, 7,8,9,10,
11, 12, with the finger a the second basket, and 0 on, up to 37, 38, 39, 40, 41,42 with
the finger a the seventh basket.

Pupil B counted, while his finger glided from one basket to the next: 6, 12, 18, 24, 30,
36, 42.

Pupil C did the same as B, without using his finger.

Pupil D sad: 7 times 6 = 42.

(Between pupil A and B one could interpolate a variant A" who does the same as
A but without using his finger as a marker.)

How would these pupils have reacted in the situations (a) and (c)? In partic-
ular would pupil D in situation (a) have used multiplication, and would pupil
A have interpreted situation () as a multiplication or would he have failed
completely? What background part did multiplication play with pupils B and C
in dtuation (b)? Rather than using 1 X 6=6,2X6=12,3X6=18,...itis
easer to recite the Sxes table in the singsong 6, 12, 18, ..., and meanwhile,
with the finger or an eye on the basket or while counting on one's fingers,
control the number of steps to be taken in the multiplier. A bunch of questions.
A long term observer could have sad more about them.

| can say just as little about whether some pupils saw the structure of set
of the pairs in the data — one needs to know much more about their former
learning processes. The structuring articulation after each Sx may be presumed
to be operationa in dl pupils, A marked it with the displacement of his finger,
and B and C with counting by six. The solely mental presence of the eggs was
certainly a factor in favouring this structuring. It may be guessed that in situa-
tion (a) it would have been less favoured.

How would these pupils have reacted to a counting problem in a rectangle
pattern (seven rows of sSx eggs)? Probably A would dso have counted; B and C
would perhaps learn by such examples to interpret a rectangle modd directly
asamultiplication.

More questions. | have never felt so frustrated by the lack of continuity in
the learning processes | have had the chance to observe.

4.32. The Multiplicative Structure of N

The multiplicative structure of N is the whole of the relaions
a-b=c,

possibly aso expressed as

* | have adapted the problem to my mode terminology. Origindly it was about house
trailers and people.
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c:b=a,
complemented by

a*b-c=d
a~b=d:c

and dl one can think about in this context.
At ahigher leve it includes experience, and a a il higher level formulated
knowledge, of such propertiesas

commutativity,

associativity,

distributivity,

equivdence ofa-b=candc:a=b,

and many more properties of this kind.

The structure grows as the learner explores N, but fundamental properties
such as the ones just mentioned can be experienced fully and clearly and even
formulated within a quite restricted part of N.

The structure of N is partly accessble by memorising tables; beyond this, it
is obtained and analysed by means of the agorithms of the decima system,
which will be dealt with later in this chapter.

However, the relations considered <o far, yield an insufficient grasp of the
structure of N. The relation

a-b=c,

for instance, can be structured by fixing a and having b run through the number
sequence; this yieds for ¢ an arithmetical sequence visudised by jumps on
the number line.

Or | can fix ¢ and find systematicaly its splittings into two factors, which
areillustrated by rectangles with a given area.

| can dso Folit into more factors, factorising into prime factors. Divisors,
multiples, remainder classes are other means of structuring. Divisihility properties
can serve to simplify multiplication.

As in the case of the additive structure of N, the order structure deserves
attention if tied to the multiplicative structure. It is obvious that larger factors
yield larger products, but this does not necessarily include the change of
perspective:

given the product, increesng one factor and decreasing the other go
together

isan order reversing behaviour, which plays a part in division:

smadler portions—larger numbers,
bigger portion — smaller numbers.
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In another way the order structure of N is operationd in division: the number
sequence is divided by an arithmetical sequence into intervals,

which numbers are in such an interval?
in which interval does a given number lie?

are relevant questions.

4.33. The Constitution of Division as a Mental Act

The relation of dividing to multiplying is much more involved than that of sub-
tracting to adding. It is much less symmetric in the case of multiplication and
divison than it is for addition and subtraction. This discrepancy extends from
the most simple activity to the fully developed concepts. At a glance one can
tell whether a number can be subtracted from another: the smaler from the
bigger. Whether a divison terminates is a surprise. Nothing like the remainder
in divison exists in subtraction, or should it be 3 — 8 = Oremainder 5 (that is,
if the problem is about money, the amount by which one is another's debtor)?
On the other hand, a an early dage children know, besdes the indivisble
object, other — continuous — objects that suggest unrestricted divisibility and
invite the extending of N to R+, whereas suggestions of restricted subtraction
and extension of N to Z are scarcer and weaker.

Divison does not occur as universally in the function of inverting multiplice-
tion as does subtraction with respect to addition. There is no counterpart in
divison to performing an act three times as shown by the former examples.
Even “haf” is no good as a counterpart of “double’, as witnessed by “bigger
half” in the vernacular.

Phenomenologically viewed, dividing arisesin three ways. as

continually taking away,
distributing in equa parts,
inverting a multiplication.

Dividing by repeated subtractions is the counterpart of multiplying by
repeated additions:

how often can you take away a set of three from this pile;

how many jumps of three do you need to go from here to there;
how many times does the three-metre rod fit aong the corridor;
how many times can you scoop 3 litres from this vessal?

Being able to subtract g times d from a number or magnitude a means that the
remainder must be smaller than d:

a=qd+r with r<d.

The ancient mechanical calculator, which did not know multiplication tables,
performed divisons as repeated subtractions; that is to say, rather than starting
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with d, starting with a 10™d in order to apply the same procedure with 10™'d
to the remainder, and 0 on. Likewise, in the usua long division agorithm the
subtractive structure of the process is recognisable, though perhaps shortened by
the knowledge of multiplication tables.

This kind of divison should be contrasted with that of dispensing equa
shares of equivalent objects to, say, g persons. Each gets one of the equal shares,
a gth part — a strange terminology, if you stop to think about it, but so familiar
that it looks natural.* In every language | know, the ordinal number is used to
indicate how many shares it is of one share — leaving aside division by two, for
which there are specia expressions like one half. This terminology looks even
stranger if instead of a quantity of objects divided among g persons, a number,
sy 12, is divided in, say, three parts. Then 4 is the, rather than a, third part of
12. It is s0 easy to pass from concrete sharing to abstract dividing and at the
same time from a gth part to the gth part, but whether it is as easy for the
learner, we simply do not know.

Distributing a smal quantity in a small number of equal parts is most often
an intuitive procedure, in particular if done with magnitudes, which in principle
can be divided with no remainder left. It is exercised and understood early; in
particular, a meting out fair shares to a number of persons. It can be done by
giving them cyclicaly the same share until nothing is left or something is left
that does not admit of dividing.

These two kinds of division were formerly distinguished as

ratio divison
and
digtributive division,
and separately learned and trained as such.** The question of the ratio division
is
how many times does d go into a?,
that of the distributive division is
what is the gth part of a?

The difference is particularly striking if a and d are concrete numbers of the
same kind:

how many persons are dealt with if each gets d out of a florins?
how many florins does each of q persons get if a florins are distributed?

Under both aspects the remainder has the same function: a remainder too small
to fit what is taken away, or too smal to be fairly shared.

* This question will be tackled once more in Chapter 5, on fractions.
** Cp. Mathematics as an Educational Task, pp. 252—254.
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With division as the converse of multiplication it is different. The arithmetical
sequence of multiples of d determines intervals in N; the number a is placed in
one of them. If it is between qd and (g + 1)d, then g is the quotient of “a
divided by d’. After g steps of d on the number line, there are ill r smple
steps left to reach a, and that is the remainder.

This is how elementary divisons are learned: one takes one's bearingsin the
frame of the table of d and situates a with respect to it. To achieve this, one
has to know the multiplication tables well.

From the viewpoint of inverting multiplication the two kinds of divison
can be digtinguished as follows: If | read

a=q-d

as a equals q times d, the factors q and d are not exactly the same thing: d is
the thing that is taken g times. This is strongly felt if d is not smply anumber
but a concrete number or a magnitude:

3 weeks =3 - 7 days
3 dozen =3 * 12 pieces
3 notes of 25 florins equa 3 - 25 florins.

The set whose product is the cardind bears a certain structure, which means
that the factors are not a priori commutants.
In the equation

a=qd

| can ask for qif aand d are given — ratio divison —, or for d if aand g are given
— distributive division. Thus, also as a converse of multiplication, division shows
two facets. Well, one could do the same with the addition, distinguishing the
summands and asking two questions:

how much added to a to get c?
to what is b added to get c?

Yet the asymmetry is not so striking in addition asit is in multiplication, where
one of the factors can be concrete and the other abstract.

More profoundly viewed, two aspectsof division are not yet enough. Concrete
numbers are multiplied by concrete ones too, magnitudes by magnitudes, such
&

length times width = area,
quantity times unit price = total price,
time by speed = distance,
time by rate of interest by capital = total interest,
and though such equations can dso be solved with respect to different factors,

it is not usual to digtinguish here various kinds of division. For good reason
indeed: Mathematics is powerful thanks to its universality. One can count dl



NATURAL NUMBERS 117

sets by the same sort of numbers, as one can measure dl magnitudes by the
sane sort of numbers. Numbers do have a numerosity and a counting aspect;
addition has a cardinal, an ordinal, and a measure aspect; multiplication has the
aspect of repeated addition and of pair formation, and likewise divison has its
own variety of aspects. But in spite of this wealth of aspects, it is always the
same operation — a fact that expresses itself by agorithmics. As a calculator
one may forget about the origin of one's numbers and the origin of one's
arithmetical problem in some word problem. But at the same time one must
be ale to return from the agorithmic smplicity to the phenomena variety in
order to discover the simplicity in the variety. It is the secret of aspects that they
are discovered at one time and neglected a another time, and the knowledge of
it is part of the congtitution of the mental object or act in question.

4.34-43. Algorithmicsin N

4.34. Algorithmics was touched on in the last section and earlier in Section 3.30.
In the case of divison | aluded to a very specid algorithm, whose definitive
version is long division. Algorithmics can, however, be understood more broadly
as an organisation by which one is advised to follow prescribed rules, where each
particular step requires a decison bound by certain criteria, under which the
step is easily performed. For the computer such rules are more narrowly formu-
lated than for man; the human calculator should have the liberty of replacing a
multiplication by 98 with one by 100-2 in order to apply distributivity, but
in a computer program the advantage of less computer time does not outweigh
the disadvantage of a more involved program. It is as though a bank whose
customers may have severd accounts would think about saving podtage by
sending messages regarding the various accounts in one envelope. The savings
might not outweigh the costs of a foolproof program for such a complicated
system. For crossing a road pedestrians follow rules such as “first look left,
then look right” (not useful on one-way streets), but this can hardly be cdled
an agorithm. A crossroadswith traffic lightsis different — “cross when the light
isgreen” looks more like an agorithmic rule.

Though agorithms may sometimes look like an aim in itself, they are not.
They serve to smplify complex activities — complex up to impossibility. Insght
is superseded by automatisms; that is, automatisms that are dependable even
though they are controlled by little or no insight. This is what you teach
computers by means of good computer programs. Man is less easily programmed.
Programs are inculcated by numerous repetitions;, whether people are dow or
fast learners, flawless functioning is quite exceptional.

This serioudy restricts the usefulness of learning algorithms, and in particular
if it happens with no appeal to insight. How much time and trouble should be
spent on teaching some agorithm which might be expected to be applied only
rarely by the learner? In a period of non-activity the agorithmic ability might
fade away or be lost. If some opportunity would then occur to apply it, it
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would be forgotten or shrouded in fog. But if one has learned the agorithm by
insight, there is some chance that it can be reconstructed. “I can remember there
was a trick”, but whether the reconstruction succeeds or not may depend on
how that trick has been learned.

Algorithmics, as considered here, springs from radical formalising. Mental
objects are fixed, or even replaced by, linguistic symbols — in the language of
the abacus or the digita system —, operations on mental objects are supported,
or even replaced, by trictly regimented syntactic operations on linguistic
symbols — the column arithmetic — relations between mental objects are trans-
lated into, or replaced by, regimented syntactic propositions, properties of the
operations and relations are expressed, or replaced, by formulas — but this is a
new stage of algorithmising: algebraisation.

4.35. The usua agorithmics of the operations in N rests on the decima struc-
turing of N, followed by a formalisation by means of the positiona system. A
number n € N isdissected into asum

n=aq;10{ +a;_, 10—t + .. . +a,,

where i € N and for the a; the values 0, 1, ... , 9 are dlowed. If a; # Oispre-
scribed, this presentation of n (# 0)isunique. Positionaly n iswritten as

Qai_y...4a,

that is with a; beads, chips, strokes in the jth column (starting at the right with
the Oth column) of the abacus, or with the digital symbol for g; inthe jth
position (starting a the right with the Oth position) of the writing material.
(I neglect abaci with intermediate units of 5, as used in the Far East).

The school abaci now available redise the columns by means of metal rods
with — mostly — 20 beads each. Representing numbers requires no more than
9 beads to a rod; the surplus is meant as a reserve for adding numbers or dis-
solving a higher unit into 10 lower ones. Consequently, number representation
is not unique on the school abacus; there is a most economical, the reduced
one, which reflects the digital representation with 9 beads at most on each rod.

For initial learning of the agorithms of adding and subtracting, this non-
unigueness, compared to the uniqueness of the reduced presentation, is an
advantage. This is one of the reasons why in initiad learning the abacus desarves
to be preferred above the digital representation. This does not mean neglecting
the digital presentation; on the contrary, the two tasks

to represent awritten number — in variousways — on the abacus,
to note down in digits a number — arhitrarily given on the abacus,

program the learner in a natural way to

transfer 10 units as one higher unit to the left,
transfer one unit as 10 lower units to the right
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in the operations of
adding
and
subtracting.
For the addition
8+5

first 8 then 5 beads are made visible from the hidden supply on the units rod,
from which 10 are taken away and replaced with a bead in the tens rod, after
which the result is read as 13.

For the subtraction

13-8

one bead is placed on the tens rod and three beads on the units rod, then
the one on the tens is replaced by 10 on the units, after which 8 beads are
pushed to the rear, leaving 5 visible.

This procedure is usualy maintained for a short time only. Soon, in perform-
ing the addition, one observes pupils structuring the 5 as 2 + 3 when they push
the 5 to the fore; then comes a stage where they more or less mark pushing the
string of 5 beads, and finally one where they immediately unite 5 from the 8
beads with the 5 to be added, pushing them behind and replace them with one
bead in the tens. Then the addition 8 + 5 is functioning mentally, and the abacus
is used as an ad to memory.

With subtraction one can likewise observe the abacus structuring the mental
act, though the learning process takes more time. Two ways of structuring can
be observed:

13-8=(10+3)—8=(10—-8)+3
and
13-8=(10+3)—8=(10+3)—(5+3)=10—35;

that is, from the 10 arisen by dissolving, the pupil immediately takes away 8,
or he splits the taking away process into two steps, first 3, then 5. On the
number line the first means taking away at the start, the second, at the end.

The didactical use of the abacus, as here demonstrated, is to suggest mental
procedures of this kind. When observing the children’s activities, the teacher
can reinforce the inclination to mentalise by useful interaction and can clear
away possible blocks.

There are a number of transitional stages between the abacus with the beads
and the column arithmetic on paper. A pictorid abacus — columns with strokes
instead of rods with beads — is one of these stages. In such a situation, where
no beads are being pushed and erasing is annoying, mental acts are stimulated.
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The pictorial abacus can be even more dissmilar to the genuine one: though
there are ill drawn columns, digits rather than strokes are put in the columns,

such as
8 1110 110
2+ - 3+ »> 113
3+

2 3

18 1
S5+ -

and smilarly with subtraction.

The abacus is not the only tool used to suggest completing and reducing to
tens in addition and subtraction. This can be suggested in another way on a
number line where the tens are marked in a specid way, or only the tens are
numbered and the numbersin between are indicated by strokes or dots.

18+5
is structured on the abacus as
(10+8)+5=10+(8+5)=10+13 =23,
but on the number line the closeness to 20 prevalls,
18+5=18+(2+3)=(18 +2) +3=23,

amethod dso applied in mental arithmetic.
As long as agorithmics is dominated by the abacus or some intermediate
form, it does not matter in which order the various columns are processed

365 31615
- 511412 > 6]4]12 > 652
287 + 21817+
isone way, but there are many more.
365 211615 5 15
- - 0]8 - 0]7 - 0]78
287 — 2| 817— 7 7

can dso be performed in another order. Proceeding from right to left recom-
mends itsdlf in the fina agorithm as the method that admits of the shortest
notation. The definitive algorithm is automatised to such a degree that while
working on a column, one does not pay attention to the next one a the left.

In mental arithmetic it is a habit to proceed from the left to the right. Some-
times instruction builds such a strong system separation between mental and
column arithmetic, determined by the horizontal or vertica postion of the
summands, that pupils do not grasp that both operations mean the same. Of
course, numbers to be added or subtracted should not aways be given in the
vertical position; pupils should have the opportunity to rearrange the given
numbers verticaly and in order.
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In the definitive algorithm haptic and visua auxiliary means are replaced by
“borrowing” and “keeping in mind”. The mental activity can be burdened with
multiple “keeping in minds’, the influence of more summandsand more columns
in additions, repeated borrowing in subtraction. It is even more burdened in
menta arithmetic, when visua support is lacking and pupils may have forgotten
the result of the first partial operation & soon as they accomplish the next.
Poor achievement in column arithmetic may result from a lack not of under-
standing but of attention and concentration. Even though the pupils may be
fascinated in genera, this attention can dacken, certainly a the age when
children are taught column arithmetic. Even good pupils can make a lot of
errors; less able pupils can be discouraged by their failures and finaly stop
learning atogether.*

Learning column addition and subtraction has been viewed here as a — |
do not say gradual but — step-by-step development. By preference the steps
should be taken spontaneoudly by the learner —for the course that was sketched
here, it has been shown to be feasible. As much as possible, the particular
steps should be observed by the teacher and made conscious to the learner, as
a means of reinforcement. Pupils who are not strictly led may develop methods
of their own. Once | observed a pupil who in subtractions amost systematically
rounded the subtrahend upwards:

365 365 65
287 - - 300—- - - 78
13 +
13+

Perhaps this method is even better than the usua one. Anyway a pupil who
contrives such things proves to act with so much insight that he can learn the
traditional way too.

On the other hand, pupils should not be pushed to take a step on the road
to agorithmisation unless they have really got there. These are general didactical
principles, though particularly relevant for learning column arithmetic. Replacing
insight with agorithms is a meaningful activity provided the agorithm has arisen
from ingght rather than having been imposed and blindly accepted. “If it does
not do any good, it does not do any harm”, is not a convincing argument.
Algorithms should be learned by dgorithmising, and this means most often by
progressive algorithmising, which is a specia case of progressive schematising.

Even this is not sufficient. Once a performance has been learned, the way
in which it has been learned is readily forgotten. For agorithms this may mean
that their sources of insdght are clogged. In the aftermath of algorithms, teaching
should am at retention of insight.

*  Another cause of failure, possbly even more important than lack of attention and con-
centration, which seems not to have received sufficient attention, is failure of short term
memory. This is not the place to advise remedid teachers. My experience has shown that
systematic training of short memory can be helpful.
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4.36. Spontaneous algorithmisations are less easily prepared for multiplication.
The operation is more difficult, and the natural motivation is not strong enough
to conquer the difficulty. Multiplying is defined as repeatedly adding, and if
4 times 8 or 4 times 8 florins can be obtained by smple adding, if the price of
20 Season's Wishes at 0.50 florin a piece can be obtained by pushing a key
twenty times, extra stimuli are required to store the results of multiplication
in the memory. Once and for dl — | came near to saying — but that isjust not
what happens. We know that this is not impossible, imprinting something in
one's memory in one stroke — a name, a phone number, a birthday — if only
we concentrate on it. But it seems that learning the tables looks more like being
introduced to twenty people in a row — there are not many who can tie their
attention to such a procedure. Learning the tables is a process of dow inculca
tion, of transfer from short term to long term memory. In column multiplication
the knowledge of tables is rewarded; so column multiplication might be a good
motivation to learn tables. It sounds paradoxica: The exercises by which
memorising tables is motivated do not start until the learner is supposed to be
familiar withthem —agap that isnot easily bridged.

| do not know serious research about how to guide the memorisation of tables
— | mean research on actual learning processes. Pupils develop a great many
strategies in order to facilitate the ever fresh computations of the table products.
One of them starts with familiar products, such asn®> (n=1,2,...,9), which
are somehow attractive, in order to go up and down. But it can happen as well
that if, say, 7 X 8 is asked, the pupil leafs back to 6 X 8,which he recalls was
asked earlier. Some more knowledge about pupils strategies might lead to more
effective techniques in teaching tables.

4.36a. In the origind version, | turned at this point immediately to column
multiplication in genera (Section 437). Remedia work with 5th and 6th
graders revealed to me a source of failure. It concerns certain apparently simple
automatisms of the positional system of N (and as important for decima frac-
tions) which are fundamental and indispensable if the algorithms are to function
at all.

| means the automatised rules

multiplying by 10:  attaching a zero,
multiplying by 100:  attaching two zeroes,

and 0 on, in genera

multiplying by 10 . . . 0:  attachingas many zeroes as there are after
the one.

The converses, related to division:

divisonby 10. dropping apossible zero at the end,
divison by 100:  dropping two possible zeroes at the end,



NATURAL NUMBERS 123

and 0 on, in genera

divisonby 10. . . 0: dropping as many possible zeroes at the end as
there are after the one.

Adults | observed — from teachers in training to professors of sciences — were
as familiar with these rules as they were unable to argue them, and even to feel
any need for arguing them — a shortcoming which is perhaps more serious for
teachers in training, with a view to their future job, than it is with professors.
Some of them, perhaps even many, will have learned such rules by insight. It
looks like a typical case of clogging the sources of insght by rote exercise. |
should add that in the textbooks | consulted I met with the same lack of insight
—that is to say, didactical insght in how to stimulate useful learning processes
towards these rules by didactic sequences.

Let us start with the phenomenon that the tablesfor 2,3, ... terminate with
the round numbers 20, 30, .... It is a phenomenon experienced by |learners
with fedings varying from satisfaction to astonishment. Anyway, they are
keen to reach at the terminus the safe harbour of 10 times. Would it not be
wise to make good use of this emotional concern to have them to explain this
phenomenon?

If we do nothing, the road to the above rules is paved by the empirical
induction

10X1=10,10X2=20,10X3=30,...,10X10=100,10 X
11=110,...

thus ten times means a zero at the end. From here an easy — too easy —
generalisation leads to the multiples of 100, 1000, and so on. It is obvious,
however, that this learning process provides less insight than is possible and
desirable. What to do about it?

Firg of dl, the phenomenon of the handsome terminus of the tables should
be explained, which may happen in two steps. first, commutativity — known
from the rectangle model — which transforms

10 twos into 2 tens,
10 threesinto 3 tens,

and 0 on; second, coupling this to the promotion of

2 onesinto 2 tens,
3 onesinto 3 tens,

and 0 on by attaching a zero, which can be supported by the abacus or other
material. This, then, is the indispensable link in the learning process towards
the rule of multiplying by 10 while attaching a zero,

10 times 463 are 463 tens,

which requires the three units promoted to as many tens, the Six tens promoted
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to as many hundreds, the four hundreds to as many thousands, which results
in attaching a zero. The promotion of

unitsto tens,
tens to hundreds,

and so on, by attaching a zero thus reflects multiplication by 10.
The next step would be understanding multiplications by 100, 1000, ... as
repeated multiplication by 10, in order to get the promotion of

tens to thousands,
and S0 on, by attaching two zeroes, reflecting multiplication by 100, and so on.

An (intelligent) 12-year old says that multiplying a number by 10 and once more by 10
boils down to multiplying by 20. She masters the rule of attaching one zero, but without
understanding it. She does not master those of multiplying by 100, 1000, and o on. She
does not know what is 1000 x 1000. She does not know how to divide by 10. She knows
almost nothing about decimal fractions.

Divison by 10, 100, . . ., if possible, should be made explicit in this context.
This didactical sequence has its sequel in decimal fractions (cf. Section 5.24a).

A question, which will then be repeated, is whether in such a sequence the
power notations

102 =10 X 10,
10° =10 X 10X 10,

and 0 on, should be used. The law of exponents is a powerful means, which,
however, can didactically lead the wrong way (10% X 10% = 10%). The reader
will have understood that the power notations in Section 437 are his business
rather than the pupils’, but this does not exclude a final transfer to the pupil.

4.37. Column multiplication in the decimal system is based on the knowledge
of the tables, that is, the products

i-j with 4,j=0,1,...,9,
on the rule
107 - 109 = 10P*4,
and on applying distributivity. If two numbers m, n are given decimally,
m=ap 10 +.. . +a,,
n=b10l +...+b,
the product
me-n=(al0% + ... +ag) (bj10f + ... +bg)
is built from the partial products
a;10% + b;107 = a;bj - 108%.



NATURAL NUMBERS 125

These partial products are computed and pulled together according to some
principle which assures that each gets its turn once and only once. The question
of how this can be done most efficiently should be answered by the algorithm
of multiplication. Let us forget the usual solutions and ask ourselves how we
would tackle such problem if they were new for us.

Well, the most natural image is a two-dimensional pattern, a table with two
entries: one factor is written in the ordinary way, horizontally, the units a the
right and progressing to the left according to powers of 10; the other vertically,
from below to above. At the crossing of the 10/ row and the 10/ column the
product a;b; is placed, omitting the factor 10%+/.

b by, by bo
ay arb; agby_, ce aigb, arbo
4 ap_1 by ag_1b—y ... ay_1b, gy by
ay ﬂlb[ albl_, ... albl albO
dy aob[ aob[_l e aobl aobo

It is these partial products a;b; provided with thefactors 107* that should be
pulled together.

Which ones among them bear the factor 107 ?Onegets
aybo10°
+ (aobl +a, b°)10'
+(aob2 +a,b| +azbo)102
+(@ob; +a by +azby +a3b,)10°
+...
which, indeed, suggests a way of conbining: according to oblique lines under
an angle of 45° from below left to above right. | think everyone would do it

this way if he were dlowed from this point of view to reinvent multiplication.
In fact, it is the way to multiply polynomidsin x,

agxk +ap_ xk—1+ .. . +ta;x +a,,

bix! +bj_,xI=' +...+bx +b,.

The boxes of this pattern contain two-digit numbers yielded by the tables. Let
us do it numerically
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7 6 5
7 49 42 35
8 56 48 40
9 63 54 45

104 10 10° 10' 10°
49 98 146 94 45
or verticaly

14945
9864
49

603585

which could aso be done mentally, with alot of “keepingin mind”.

It is a matter of technique how this assembly along the oblique lines is
performed. For instance, one could do it on the abacus. First the 45, then one
column to the right 40 and 54, one more column to the right 35, 48, 63, and
0 on. Written down

45

500
540
3500
4800
6300
42000
56000
490000

603585.

That isto say, one attaches as many zeroes as correspond to the oblique lines,
but the zeroes can dso readily be dropped. For safety one can place the corres-
ponding power of 10 at the row, columns, and oblique lines (Figure 22), thus

102 10! 100
7 6 5
102 7/104

101 8

103
102

10!
100 9

Fig. 22.
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Adding according to the oblique lines can dso be done mentally, which would
mean writing down the result in one line. That, then, is the so-called abridged
multiplication — not new — which | have presented here.

The method exposed here is mathematically the most natural, but it is not
the usual one. There are reasons why it is not. First of dl are historica reasons.
Abacus traditions may have played as big a part as accident when the system
was chosen, but once the choice had been made, it became a tradition. It is
not easy to change such things. It is safer to have a teacher teach a method he
has mastered than one he must learn himself and that is not convincingly better
than the old one.

Didactica arguments can dso be adduced in favour of the usual method, and
this is very likely to tip the scae. After learning the tables and products like

3-40= 30-40=
and 0 on, the first true column multiplications will be
24-2= 24-8=.

The rectangular pattern shows no more than one column

2 8
214 2(16
4)8 4|32
while the usual method
24 24
X_2 Xx_8
8 32
40 160
48 192
iS more perspicuous.

The next step in the learning process would be dropping the zeroes and short-
ening the procedure: Less on the paper and more mentally: 2times4is 8,2 times
2 is 4, 8 times4 is 32; write down 2, keep in mind 3,8 times 2 is 16, plus 3 kept
inmind is 19. The result iswritten in one line, without intermediate steps.

This then determines the sequel. The next step is

24
X _80
reduced to
24
X 8

which had been mastered earlier and is augmented by a zero. Similarly
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24
X 800
is dealt with.
Then
24
X 82

invites splitting into

24 24
X _2 X 80

brought into one pattern

24
X 82

48
1920

1968

where finally a zero may be dropped.
This is in principle the general method, but it does not mean hurrying to
apply it directly to

789
X 765

which initidly is better dissolved into

789 789 789
X 5 X 60 X 700 .

Perhaps this even helps better one's understanding of

789
X 705

It is a quite natural course, thisway. Viewed through the rectangular pattern
it is assembling the partial products according to columns, Oth column, 1
column, and so on, and within the columns upwards. But this table of partial
products is not made explicit. 1 confront the two methods with each other
without drawing any conclusion. | myself do it accordingto the method | learned
at school; in spite of many efforts | never succeeded in chasing it away in favour
of the more efficient abridged method.
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4.38. In alearning process directed towards reading the ordinary agorithm, the
rectangle model of multiplication need not be excluded. It is entitled to be taken
seriously because of its convincing geometric power as well asits significance for
the product as a means to calculate areas. Its use has many times been proposed,
and it has recently been elaborated in the Wiskobas curriculum.*

The product m « n is visudised by a fabric with n warp and m woof threads
(Figure 23). The number of crossings can be counted and calculated more or less
adroitly. The threads are taken together in bundles of ten. Thus, for instance
24 « 8 becomes the Pattern of Figure 24, and by a similar, though more com-
plicated, pattern 24 « 82 is illustrated. Counting the crossings adroitly is away
to structure the activity.

10

L 3 =

Fig. 24.

From the abacus the suggestion comes to combine ten thin threads into
the thick thread, which for 24 « 82 means (Figure 25) a way to structure the
counting activity even more sharply.

80 2

20

Fig. 25.
*  Leerplanpublikatie 10, Wiskobas Bulletin 8, nr. 56, Nov. 1979.
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The method can be extended to factors with more than two digits, athough
this can hardly be recommended. Instead, genuine algorithmisation should
have started in the meantime and even made fair progress. Finally the geometric
picture will fade away. In the long run, visudisng may not interfere with
agorithmising. But if need be, the picture can be cdled in, in particular when
the area of the rectangle is dedt with. Then the fabric becomes, as it were, a
braided mat, the threads become strips, horizontal and vertical; say, one mm for
the thin ones, and one cm for the thick ones. Thisis not absurd — fabric threads
too have a thickness and can be close enough to fill an area.

4.39. Among the four arithmetical operations, division is of course the most
difficult. Its algorithm is complicated and hard to memorise. To make it even
harder, it contains a particularly strange element that has no analogue in the
other algorithms: estimating partial quotients. Few pupils attain reasonable
proficiency and accuracy in long division, and after a lapse of time, with little
opportunity to practice, the agorithm is soon forgotten.

For learning the agorithm it does not matter whether dividing is understood
as repeated teking away or as distribution, though the first approach is more
appropriate to exploring self-reliantly and describing the applied procedure.

Dividing 56789 by 3

then means subtracting 3 again and again, though these subtractions can be
performed at a larger scale, say, 10000 threes at the first step in the present
example

56789
30000 10000 times
26789
24000 8000 times
2789
2700 900 times
89
60 20 times
29
27 9 times
2

together 18929 times, with the remainder 2. The pupil will initialy fail to take
away the largest possible amount. Findly he will understand that the decision
how many times to subtract the divisor, boils down to an elementary division
problem. Large dividends are conducive to subtracting as much as possible in
one stroke.

The above pattern does not differ too much from the definitive one. One
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writes the partial quotients above rather than at the side, while dropping the
zeroes to get the familiar pattern.

In this example the divisor was a one-digit number. The real difficulties
arise with longer divisors. This extension should not be attacked unless long
divison with a one-digit divisor has been reasonably mastered agorithmicaly.
Technica difficulties can persist even though the principle has been understood.
In view of the mass of calculations required in long division, it may be taken
as awonder if no mistakes dip in. One out of three long divisions correct may
be a discouraging experience, yet in fact this is the normal achievement. If it is
even worse, there is a big chance that the pupil stops atogether. Such long
divisions are of no practical use any more; if it is serious, one uses the calculator.

Apart from the mass of calculations there is another factor that makes long
divison in general difficult. In the case of one-digit divisors the multiplication
tables suffice to find the partial quotients. when dividing by 7, dl one has to do
is locate anumber < 70 between the rungs of the ladder for 7. This convenience
is lacking in general, say, with the divisor 47. The table of 47 is not something
to be memorised. If 331 is to be divided by 47 one has to scan the multiple of
47 that is just below 331. Rounding the divisor is one way to try it; in the
present case: dividing 331 by 50, or rather 33 by 5. It goes six times. 50 goes
6 times in 330 with a large remainder. 47 < 50, 0 the correct partial quotient
must be a least as large as 6. But 6 times 47 = 282, which is 49 less than 331.
Thus 6 was not enough. It should be 7, thus

331:47=7rem. 2.

A long reasoning with a lot of computations in order to get this result, which
with a longer dividend is only the first step. Trid and error, and finaly the
experience of failing — a new experience of uncertainty that is not to the benefit
of the work.

4.42. Divishility too isa structure of N which isaso algorithmically approached.

There are algorithmic rules for divishility by 2, 3, 4, 5, 6, 8, 9, 10; that
for 11 is relatively simple, but that for 7 is not worth memorising. The three-
folds of 37 are funny. The multiples of 142857 show nice regularities which
have profound roots.

The rules, particularly, for divishility are well-known, but very few people
feel the need for asking “why?’. The rules are considered to be empirical facts.
Divighility by 9 can be elucidated by the abacus. Transferring a bead from one
rod to another makes a difference that is a multiple of 9; for instance

10000 — 1000 = 9000.

Transferring dl beads to the rod of the units yields the total of the digits, which
differs from the origind number by a multiple of 9. Divison by 9 leads to the
same remainder with both of them.
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In order to see whether a number is prime or to factor it, one tries the prime
divisors 2, 3,... systematically; at vV oneisallowed to stop.

The greatest common divisor of two numbers is delivered by the agorithm,
named after Euclid.

4.43. Without much ado we have based the algorithmics of N on the decimal
structure of N. | think it should be done this way. Innovators like to do alot
with structures on other bases. They make one believe that it is mathematics if
one moves into another positional system. It is, however, only adlightly different
algorithm rather than an expresson of mathematics. Some of them assart that
the principle of the positional system is better understood if it is embodied
more than once — by a variety of systems and not only in base 10. There is,
however, not the dightest indication that they are right, though | do not exclude
other basesfor remedial use. Unorthodox positional systemsare rather a symptom
of innovation by new subject matter. If compared with mathematics resulting
from pondering more profoundly the subject matter and its relations to reality,
unorthodox positional systems are a mere joke. Jokes are a good thing in in-
struction. It is good didactics to motivate pupils by jokes, and an unorthodox
positional system may even be a good joke. Of course, other bases can have
their own significance, in particular base two, that is, for computers. A context
that justifies other bases mathematically will be touched on in Section 5.27.



CHAPTER 5

FRACTIONS

5.1-2. TheTitle

5.1. It is not a dip of the pen — “fractions’ rather than “positive rational
numbers’ in the title of the chapter. It looks old-fashioned, this terminology.
To the present view rational numbers are the proper mathematical objects that
are meant here. Thisview is correct, as a consequence of how the mathematician
interpretshisformulae. If a and b are numbers,

a+ b isnot the assgnment “add b to &,
rather it is again a number, to wit the sum of a and b. If thisis understood,
3+ 2isagain anumber,

which more briefly can be written “5”, though if you like it you may write
“J 25 aswell, or log;o 10°.

3+2=5
then should not be read
if | add 2 to 3 | get 5,
but
3+2and 5 are the same thing —
sometimes dso formulated as
“3 + 2" and “5" are different names of the same thing,
such as, for instance,
“Amsterdam” and “capital of the Netherlands’

are names of the same thing.
On the left and right of the equality sign, the same object occurs. Likewise

there is talk of again and again the same thing, only represented in various ways,
and thisthing isarational number. Well, one can agree to prefer theway % and
in general, for every ratiional number, the expression by means of a fraction
where numerator and denominator have the common divisor 1, the simplified

133
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fraction; as one prefers for the number 5 the expression 5 rather than 3 + 2,
10-5 and so on, though the others are equally well admissible. There is,
however, a difference: “5" is not only the preferred name of the number 5, it is
its first name, the name by which it has been introduced to me, and under
which | first made acquaintance with it, whereas “3+2” and “10-5" are
dliases by which | can dso cdl it up. % however, is only the simplest name
of a certain rational number, and | would not even be able to say about many
rational numbers under which name | first met them. This then is the reason
why the various fractional expressions of the same rational live o much more
their own lives, and why they are known under a specid name: fraction.

But whatever one may feel about it, the mathematical object that matters
is the rational number rather than the fraction. Nevertheless, | put the word
“fractions” into the title, and | did it intentionally. Fractions are the phe-
nomenological source of the rational number — a source that never dries up.
“Fraction” — or what corresponds to it in other languages — is the word by
which the rational number enters, and in al languages | know it is related to
breaking: fracture. “Rational number” evokes much less violent associations;
“rational” is related to “ratio”, not in the sense of reason but of proportion,
of measure — alearned context, and much more so than “fraction”.

5.2. Infact, fractions have much to do with ratio, and | hesitated about whether
| should not place the word “Ratio” under “Chapter 5”. Not as a substitute for
“Fractions” but as the subject that deserved priority — priority for didactic
reasons but aso on behalf of the exposition. | delayed “Ratio” to Chapter 6,
though repeatedly in the present chapter | shal anticipate it. From the start
| have struggled with problems of priority while | wrote this book, and | can
only hope that the damage caused by that struggle looks bearable. As a matter
of fact, | have turned the present chapter insde out severa times. It is the
wealth of phenomena mastered by fractions and ratio that caused the trouble.
In order to write a phenomenology | have to pay attention to al these phenom-
ena; organising them too systematically may mean simplifying so much that it
infringes on the phenomenological task.

It cannot be denied that the didactics of fractions is characterised by unifying
trends. As a rule, natural numbers are approached on a variety of tracks. If it is
the turn of fractions, pupils are supposed to be so advanced as to be satisfied
with one approach from reality. To my view, this wrong assumption is the
reason why fractions function much worse than natural numbers and why
many people never learn fractions.

It is my intention to present fractions in their full phenomenological wealth
— | only hope that | do not drown myself in this ocean.

5.3. Fractions in Everyday Language

531  half as (by andogy with equally as, twice as,...)
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followed by
..., much, many, long, heavy, old,...

compares quantities and vaues of magnitudes.
Less usua

a third as, two thirds as
..., much, many, long, heavy, old,...

532 twoandathird timesas
..., much, many, long, heavy, old,...
is asit were an extension of

twiceas

..., much, many, long, heavy, old,....*
Yet

one third times as

..., much, many, long, heavy, old,...

can hardly be considered as belonging to everyday language.

533 half of, third of, fourth of,...

describes a quantity or a value of a magnitude by means of another. The inde-
finite or definite article adds nuances

..., a(one), the
half of, third of, fourth (quarter) of,...
a the
cake, way, travel, hour, pound, money, million,....

So does

..., a(one), the

halfof, third of, fourth (quarter) of,...
seven

cakes, hours, pounds, millions,....

Multiples can be formed

two thirds of, threefourths (quarters) of, ...
a(one), the
cake, way, travel, hour, money, million,....

* |n many other languages| would be able to add “little”, “short” and “few” to these lists.
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534 hdf a..., hdf the...
is used in the same sense.

535  From the noun or numeral to the measuring number expressed by
figures

m, kg, 1, sec, bottle, million.

53.6 A strange phenomenon — | think in dl languages — is
time or times
after fractions. In Section 5.3.2 we aready met with
... timesas....

“Times" belongs to multiplication (cf. Section 531). With a natural number m
it occursin

m times doing, undergoing, experiencing, waiting for,
something, for instance

m times saizing n marbles (m ¢ n marbles),

m times laying down a measuring stick (m times as long),
m times turning the key in the hole,

m times around the clock, the race track, the Earth,

m times rolling of a whesl,

m times swinging back and forth.

At a certain moment fractions are dlowed for m. This linguigic extension is
more easily understood if m is a mixed number:

2 timesaslong

brings
2% times as long
in its wake.
1.
— timeas long
looks unnatural, but the whole number in

1 .
2? times as long
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suggest that this means
2 times as long and —;—
In cydlic or otherwise periodic processes
L time L time Z times
2 3 *3
might be self-explaining without the whole numbers. In

—; time, 2—;— times turning the key in the hole,

-;— time, 2—;— times around the clock, race track, Earth
% time, 2% times swung back and forth

) 1 .. .

3 time, 2? times rolling of a wheel

the fraction suggests an action whose last phase has only partly been performed.
If this is gpplied to the movement of measuring - for instance the use of a
measuring tape —

| .
3 time as long, 2% times as long

becomes clearer as a process of fitting a measuring tool periodically, where the
last phese is only partialy performed.

537 Themore natura terminology is

3 times...
1
T Of. ..
andds
2
ry of...
applied to a
number, quantity of objects, divisible object, vaue of a magnitude,
such as

7, 30 marbles, acake, 5Kkg.

but arithmetic and mathematics are better served with one term only. In excep-
tional casesthe times is replaced with of, asin
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3 packages of 5 kg each,

but this is another of than after a fraction. For the s&ke of uniformity and
following an old tradition

times takes over from of.

In textbooks this is most often simply prescribed:
1 . 1
3 time means 3 of.
In the preceding we sketched natural ways from

of to times

One way is from

2 times
via
2L times
3
to
-;— time;

the other is the cyclic or periodic process.
2 times around the clock,

-%‘ time around the clock.

Later on | will deal with this question again when multiplication of fractions is
discussed.

538  Inancther way
of or outof, or in, or to

suggests a fraction in

3 (out) of (in, to) every 5 (people living in cities),
5 (out) of 100 (5%)

35 milesto the gallon,

ascde of 1 to 1000.

one chance in ahundred,

3 out of 5 parts.
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In amixture;

3 parts st and 2 parts pepper.

539 A stronger looking terminology

every third lot wins,
every fifth man is Chinese.

It seems that this is the origin of the ordinal numbers as a means to indicate
denominators of fractions. Counting 1, 2, 3, ... , 10 to count out the tenth;
dl these “tenth” people or objects together form a (one, the) tenth of the
whole. Thus the tenth part is in fact the last of dl of them. In an obsolete
terminology nine parts means 5, the remainder that is left if the tenth is
counted out. “Decimate” originaly meant counting out the tenth (to be shot).

5.4. THE FRACTION ASFRACTURER

54.1. Causing Fractions

We have dready explained how magnitudes are divided, with or without a
remainder. In order to divide substance, measured by magnitudes, many methods
are available: fracturing can be

irreversible, or reversible, or merely symbolic.
The equality of parts isjudged
a sght or by feel,
or by more sophisticated methods. One of them is
folding in two
in order to halve,
folding in three
in order to divide in three equal parts;
repeatedly folding in two and three

leads to more fractions.
Heavy objects are halved by

weighing the parts in one’ s hands or on abalance,
while repestedly correcting the lack of equilibrium. Similarly

comparing and correcting



140 CHAPTER 5

play a part if in general a substance measured by magnitudes is to be distributed;
for instance, a liquid over a number of congruent glasses, where the heights of
the liquid are then compared.

Planar and spatial figures or objects as well as large amounts are sometimes
distributed with regard to area or volume while using

congruences and symmetries;
for instance, the round cake into congruent sectors, which can be done
at sght or by feel.

In al these examples | disregarded proper measuring. | aimed at drawing
atention to more primitive methods. In the mental congtitution of al kinds of
magnitudes, meting out fair shares seems to me an important link — more im-
portant than what is investigated under the title of conservation by psychologists.
As far as | know, developmental psychologists have paid hardly any attention
to this aspect. | have observed many times that 7 to 8-year olds are able to
estimate one haf or a third of an irregular area to be coloured; by this ability
they are mastering animportant component of the mental object “area’, whereas
knowledge of the formula for the area of a rectangle as shown by 10 to 12-year
olds need not mean progress — on the contrary it can equally well mean retro-
gression. Earlier | stressed the importance of break-make transformations for the
development of magnitudes as mental objects.

5.4.2. Whole and Part

In the most concrete way fractions present themselves if a whole has been or is
being

split, cut, diced, broken, coloured
in equal parts, or if it is
experienced, imagined, thought

as such. In this complex of phenomena we will try a classification, illustrated
by examples.
Thewhole canbe

discrete or continuous,
definite  or indefinite,
structured or lacking structure,

which means extremes with a variety of transitions in between.
The attention can be directed to

one part, anumber of parts, dl parts.
The partsthemselves can be
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connected or disconnected.
The way of dividing can be

structured or unstructured.

54.3. Examples — Definite Whole (Figures 26-32)

Fig. 30.
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Out of a bag of marbles — discrete definite whole — | have taken a tenth; my
attention is fixed on this tenth, and perhaps also on the remaining nine tenths.

From the same marbles in front of me, lying or rolling, structured as a
sequence, | took arbitrarily a tenth — an unstructured choice — or the first
tenth part or every tenth of them —astructured choice.

Out of 60 beads in a bowl -+ arered,3 white, - blue—adiscretedefinite
whole, structured according to colour, unstructured in space. The same as a
string — structured as a whole, and if the beads follow each other regularly,
sy 1 red, 2 white, 3 blue, do structured asto distribution.

A lottery — discrete definite whole, structured by numbering — the attention
is fixed on the parts that gain prizes.

A strip — continuous, of definite length, with alinear structure —with one
or more segments coloured, say, red—white-blue — connected parts, or dis
connected — here and there some red, white, blue spots — divided with or
without structure.

The same with the circular disc — continuous, definite, cyclicaly structured,
divided into sectors, which separately or taken together represent parts (roulette,
spinner, sector diagram).

The same with more or less structured geometric figures:

A square with or without an underlying squared paper structure, or a regular
or irregular polygon with or without an underlying lattice structure, regularly
or irregularly divided.

The edges or faces of a cube, combined into parale quadruples and pairs,
respectively.

Curvilinearly bounded planar domains, or spatid domains bounded by
curved surfaces, regular or irregular, divided in various ways.

54.4. Examples — Indefinite Whole (Figures 33-34)

Mankind — discrete indefinite whole — divided according to blood groups, where
attention can be paid to one or more of them; the whole can further be taken as
unstructured, or as structured according to sex, race, geographical distribution,
and so on.
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!
|

Fig. 34.

A string of beads of indefinite (possbly infinite) length —discrete, indefinite,
linearly structured — and as a string of finite length, divided according to rank
numbers or colours, which can be placed in astructured or unstructured way.

A dtrip of indefinite (possibly infinite) length — continuous, indefinite,
linearly structured — and as a strip of finite length with coloured segments
or spots, structuredly or unstructuredly distributed.

A wall or a tiled floor — continuous, of indefinite extension, structured in
a pattern of bricks or tiles — divided according to colour, gloss, pictures, material
— disconnected pieces, structuredly or unstructuredly distributed with or
without structure.

The ar — continuous, indefinite, a structureless whole — divided into gases,
oxygen, nitrogen, and o on, connected parts, structureless distribution.

The soil — continuous, indefinite, a structureless whole — divided according
to categories of use — disconnected parts, structureless distribution.

Print in a certain language — discrete, indefinite, a structureless whole —
divided according to letter symbols, structureless distribution.

Time — continuous, indefinite whole — structured according to various
criteria

Remark. All these examples are to be taken with a grain of salt. Where |
cdled something “structured”, it is possible to neglect the structure if it does
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not matter, and where | aimed a “structureless’, one can introduce structure.
There are trangitions between discrete and continuous: particles can be so small
that the whole looks continuous. In a discrete whole, connection can be built
up from neighbourhood relations.

Remark. Most of the examples have been presented in a static way: some-
thing is, or is considered as divided. One can, however, read them dso in the
sense of something being divided. In some cases this is even more natural, as
it is with the beads in a bowl, the lottery, and the colours of strips and planar
domains; in the latter examples (air, soil, print) it seems less plausible, but
one can imagine situations where even here the stress is on “is being” rather
than “is” divided.

5.4.5. Whole, Part, and Fraction

Fractions were explicitly mentioned only a the beginning of Section 5.4.2,
though it was the aim of the general expositionin Section 5.4.2 and the examples
in Section 5.4.3—4 to relate the parts and the whole to each other by fractions.
Parts and whole are numerically compared according to measures that can vary
greatly.

The question of how many times a part goesinto awhole is meaningful only
if one has agreed on the condition under which parts are to be considered as
equivalent. The criterion can be

number
or
value of a certain magnitude.

Thiswill be elaborated later.

In spite of the many sided classification and the wealth of possible examples,
the approach to fractions from the point of view of “part-whole” is much too
restricted not only phenomenologically but also mathematically — this approach
yields proper fractions only. The traditional didactics of arithmetic restricts
itsdf to this approach, mostly even in the narrow sense of dividing a cake.
After these concrete cake divisions — with proper fractions only — the learner
is immediately introduced to dividing abstractly presented quantities and values
of magnitudes; with arbitrary decreeslike -;— times means the same as % of”;
and with arithmetical rules a straight way is leveled to the rational number.
Some innovators inserted a stage of fraction operators as inverses of multiplica-
tion operators. This could have been a progress were it not that even they
are stisfied with too amdl a badis of orientation.

Pupils with aknack for digesting agorithms learn to operate on fractions any-
how, pupils who are less or not at dl gifted in this specific way learn it by trial
and error or not at dl. After one or two years of fractions, some pupils master
the agorithms though they have no idea what fractions mean and what you can
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do with them; others do not even know the names of the particular fractions.
The phenomenological poverty of the approach seems to me largely responsible
for this didactic failure.

5.5. FRACTIONS AS COMPARERS

5.5.1. Comparing Concrete Objects

The traditional didactics overlooks the fact that the concreteness of fractions
does not stop with breaking a whole into parts. As the linguigtic analysis of
Section 5.3 showed, fractions dso serve in comparing objects which are

separated from each other

or are
experienced, imagined, thought as such:
in this room there are half as many women as there are men,
the bench is half the height of the table,
the street is 23 times aswide as the footpath,

John earns half as much as Pete,
copper is haf as heavy as gold.

Comparing is performed according to certain criteria,
directly and indirectly.

Directly: the objects which are to be compared are brought close together, or
are in some other way considered, asthough the smaller were part of the bigger,
by which strategy the fraction as comparer is reduced to the fraction as fracturer
of one concrete object.

Indirectly: a third object, say a measuring stick, mediates between the two
objects to be compared by being, or regarded as being, transferred from the one
to the other.

The above examples admit of another formulation:

the number of women in this room is half the number of men,
the height of the bench is hdf the height of the table,

the width of the street is 2% timesthat of the footpath,
John’s income is half of Pete’s,

the (specific) weight of copper is half that of gold.

Rather than
objects with respect to number or magnitude value
we now compare

numbers or magnitude values themdeves.



146 CHAPTER 5

It looks like too much sophistication to make this distinction, and in the
unsatisfactory phenomenology of psychologica research as well as in traditional
didactics it is disregarded. In our phenomenologica anaysis it is not superfluous.
One should fully redise that comparing with respect to number or magnitude
value precedes comparing numbers or magnitude values themselves, and that the
former remains, or should remain, imminently present in the latter as long as
fractions are to be more than a formalism.

5.5.2. Fraction and Magnitude

Earlier we explained how distributing into three equal parts can take place: with
smal quantities at sight, with larger ones by alternately taking away equa parts,
or algorithmically by division, as the inverse of multiplication. If the division
terminates, no new problem turns up. If not, then in realistic problems the
question arises of what to do with the remainder. If its division is feasible, then
the mathematical distribution problem and its relation to the real one have
changed. It is no longer a finite set that is distributed; the finite set model does
not fit the red distribution problem any more. For instance rather than six —
discrete — loaves of bread that are distributed, it is bread, in a quantity that is
thought to be arbitrarily divisible and according to a rule that states when
quantities can replace each other in order to be considered equal.

The mathematical model that fits this task of distribution, is magnitude.
It was aready discussed in Chapter 1, and it is a subject to be dealt with once
more. Meanwhile we repeat the essentials:

To constitute a magnitude in a system of quantities requires:

an equivaence relation, which describes the conditions for replacing
objects (for instance quantities of a certain substance) with each other
and which leads to equality within the magnitude,

a way of taking together objects (quantities), which leads to an addition
in the magnitude,

the unrestricted availahility of objects with the same magnitude value (that
is, in the same equivalence class), which makes addition unrestrictedly
possible,

the posshility of dividing an object into an arbitrary number of partia
objects that replace each other, which leads to division by natural numbers.

Multiplication by natural numbers is a derived operation defined by repeated
addition; “nth part of ” becomesthe inverse of “n times’. By composing multi-
plications and divisions with each other one gets multiplications by rational
numbers.

If we restrict ourselves to mathematics only, then in order to define what
magnitude is we could be satisfied with postulates on addition and division. In a
phenomenologica approach we must start with objects which by an equivaence
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relation are required to form classes representing magnitude values. The un-
restricted availability of such objects in each class is indeed indispensable. |
stress this point which via a defective phenomenology has produced a defective
didactics of fractions.

Our exposition shows an asymmetry between multiplication and division.
The operator “nth part of” can be applied to the object before it can to the
magnitude value. An nth part can be a concrete part of a given something.
On the other hand, “n times’ cannot be redised by means of the given object;
one has to cdl in others, perhaps arbitrary ones, whereas “nth part” can be
realised within the object and only the choice of the part is arbitrary.

This asymmetry is so striking that no phenomenology can be alowed to dis-
regard it and no didactics of fractions may pass over the results of this andysis.
It is, however, just the point where the traditional didactics of fractions shows
its defects, for which a defective phenomenology is likely to be made responsible.
The fraction as part of something is of such a convincing and fascinating con-
creteness that one is easily satisfied with this one phenomenological approach
and forgets about dl others. In dl examples, whether visualised or not, one
restricts onesdlf to fracturing. The nth part is exclusively seen or imagined
within the whole — something that would not be feasible with “n times’.
Phenomenologically this approach leads to proper fractions (< 1) only. The
insufficiency would appear as soon as mixed fractions (> 1) are taught, but
when this point is reached, mathematising fractions and the operations on
fractions are aready in full swing if not completed; the required extension to
mixed fractions is simply dragged aong in the stream of mathematising, or
accomplished purely formally without any phenomenologica bonds. Expressions
such as 13 are paper work, unrelated to reality, which is il visible in the
proper fraction.

The “fraction as fracturer” isnot only too narrow a start, it is dso one-sided.
It is strange that dl attempts at innovation have disregarded this point. Modern
phenomenological analysis has carefully approached the concept of magnitude;
the part played by equivalence and fractions has been recognised, but this
phenomenological analysis has never taken a didactical turn. In particular, it
has not been redised that the didactics of magnitudes cannot be built on that
of fractions, which in turn require magnitudes to be approached didactically-
phenomenologicaly. The “fraction as fracturer” can be described by a quite
restricted equivalence concept; it does not require any more than dividing
something into n equal parts. But in the didactic reality an eguivalence of
broader scope is needed, as well as the unrestricted availability of objects in
every equivalence class. So far this need has not been recognised in the didactics
of fractions and in the choice of didactical models.

5.6. Aspects of the Fraction

Let us summarise the contents of Sections 5.4-5 formally and replenish it.
Asthemental stressison
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acting or stating

the fraction appears
in an operator or in arelation

—halving versus “haf as big”.
Both the fraction operator and relation can work on and relate to each other,

respectively,
objects

with respect to certain characteristics (number, length, sdary, weight . ..) —
“half of the stick, the bench is half the height of the table, and o on — or

quantities and magnitude values

— this length is half that, this weight is2+ times that.
If the objects to be compared are

part and whole
or are considered as such, the fraction appearsin the
fracturing operator or relation.
If they are
separated,
it is better to spesk of the
ratio relation.
If it is about quantities and magnitudes, the fraction occurs in the
ratio operator,

which transforms a number, length, weight into another one.

From the ratio relation as stated between objects one can pass to the ratio
operator, which acts on quantities and magnitudes, by an intermediate stage,
the fraction in the

transformer,

such as “mapping a haf scae’, “stretching 2% times’. This operation is
performed

on the object itself,
though not by breaking, but by

mapping and deforming.
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If we leave the concrete sphere around fractions step by step we arrive at
the

fraction as measurer

preceding a unit —2+ in 23 kg 24 m, 25 cc 23 bottle — or without a

unit, asis the casewith-% , 2%, ... that measure segments

on the number ling;
the fraction operator as

inverse of the multiplication operator;
and the

fraction as rational number.

As we explained earlier, the traditional didactics knows the fraction only
in the fracturing operator, from which it passes straightforwardly to the end
of the sequence; the fraction as rational number.

5.7. TheFraction in an Operator

Among the aspectsin Section 5.6 we meet an operator aspect on three occasions,
that is,

the fracturer

which cdams to act on concrete objects by breaking them into equivaent
parts,

the ratio operator,
which puts magnitudes into a ratio with each other,
the formally defined fraction operator

in the number field.

The differences look sophigticated, but didacticaly they are not so — the
medium in which the fraction operator acts is being stripped of its concreteness
in a stepwise manner. Initialy it acts on the objects cited concretely, while their
magnitude aspects are the factors that check the fairness of the distributive
procedure. Next, the magnitudes themselves are objects, while the concrete
objects measured by them are disregarded or passed over in slence There is
a remarkable intermediate stage, the transformer, which, as it were, preserves
the substance while changing the magnitude values proportionaly. Finaly, the
fraction operator acts in the pure number domain, where it satisfies the need
for inverses of multipliers.

In the ratio relation the ratio operator is, as it were, coagulated, from an
operation to a relation between the object operated on and the result. The
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fraction as measuring number, as spot on the number line, and finally as rational
number is the result of applying the fraction operator to a unit. In dl aspects of
the fraction, the operator aspect is felt. In a didactics of fractions it should be
appreciated accordingly, and in modern approaches it is in fact done. Unfor-
tunately, this is dlied with misconceptions, expressed in such formulations as
the “fraction as operator”. Logically such interpretation is of course, feasible —
number and vectors, too, can be interpreted as operators. Elsewhere* | have
shown the didactical rocks on which thislogic must founder. The interpretation
of the fraction as an operator is untenable, as is the involved terminology. One
badly needs the fraction as a number, which for that matter may have arisen by
applying a fraction operator to a unit. This means that in the fraction operator
one must distinguish the operator from the fraction. The operator with a frac-
tion in it cannot afford a second sdif in the form of the fraction as an operator.

It is a fact that the operator aspect is more important for fractions than it is
for natural numbers. In the constitution of the mental object “natural number”
the growing together of the cardinal and ordinal root is decisive, and only after
natural numbers have been constituted are they used in operators such as “three
more than”, “three less than”, “three times (as much as, as many as)”.

Fractions, however, show the operator aspect from the start, which justifies
a didactics which calls itself — by exaggeration — the operator interpretation of
fractions.

An operation known as early as natural numbers is distributing. If a finite
set of equivalent objects is distributed into three equal parts, say, among three
persons, each part is athird, that is, a third of the whole — a strange terminology
whose troubled source | have uncovered in Section 539 — yet we are 0 ac-
customed to this strange use of the ordinal numeral that we are not aware any
more of its curiosity, let aone inclined to protest it or to ak ourselves why
year after year hosts of pupils do not grasp it.

5.8. Models of the Ratio Relation (Figures 35-38)

Fig. 35.

* Mathematics as an Educational Task, pp. 260-262.
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Fig. 38.

The universal model of magnitude is “positive number” visuaised on the number
line as length, athough other models may be equaly useful didacticaly, in
particular if fractions are concerned: area, volume, weight, time, to mention a
few. Lengths and areas have their own visudisations;, with some precaution
volumes, too, can be graphicaly visuaised, though proper spatial visudisations,
which a the same time can be rather palpabilisations, are highly recommended.
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Weights can be visudised linearly, on the scae of a spring balance or on the
beam of an old fashioned steelyard where a running weight is displaced; time is
visudised on the time axis, unreeling the clock dial, as it were. Each of these
models deserves our attention since it can be useful in the ratio relation.

| did not mention here the classcd model for fractions, the pie distribution,
not to mention more recent ones, such the fractions boxes. In the didactica
practice they may certainly not be skipped. The pie distribution is the predeces-
sor of general sector divisions of the circle that are applied as statistical sector
diagrams and in roul ettes and spinners. Asdidactical models for fractionsthey are
especidly effective if various sectors are to be taken together in order to make
assartions about “m out of n parts’ or “p parts of this againg q parts of that”.
On a spinning top, mixing p parts of one colour with g parts of another colour
to get a certain colour shade is an effective illustration of mix ratios. Likewise,
one can mix liquidsin a given ratio and illustrate the mixture in a sector diagram.
Handsome illustrations are offered by strings of beads, walls, and other patterns
where beads, stones, and so on of various colours or shapes aternate regularly in
a certain fraction ratio — three white and two black — an indefinite whole where
no limits are suggested. If the subject is fractions, the particular shares will be
expressed by fractions. Likewise, the fraction box can be handsomely used to
display histograms, but | should say that | never saw it used in this way.

Whoever uses these traditional models should bear in mind that they do not
suffice. Ther rude concreteness should not seduce him to trust this narrow
approach. The pie distribution takes place within the pie; the circle to be divided
is the universe that is divided into sectors. The clock dia can be handled more
smoothly: by the relation to time the restriction to one hour or half a day can be
removed; the did can, as it were, be unreeled on the time axis. The fraction box
is the most restricted toal; it resists not only extending but aso refinement. The
drawn rectangle has more opportunities, but as long as the rectangle is only
subdivided, it is not worth much more than the rigid fraction box.

Lengths and areas are the most natural means to visuaise magnitudes with
respect to teaching fractions. Lengths arise from straight long objects by means
of congruence as an equivaence relaion; if arbitrary long objects are admitted,
congruences have to be amplified by break-make transformations or flexions.
Aress aise from planar objects by the equivalence relaion of area equdlity,
which will be dealt with in Chapter 13; congruences and break-make transforma-
tions contribute to the extent of this equivalence cdass. In the process of pie
divison the circle sectors are compared by congruence, which should guarantee
the equality of area or volume.

Line segments are the most smple visua representatives of magnitude values.
Two magnitude vaues in a fraction relation are esslly visuaised by two line
segments in the same ratio (Figure 39); in order to make the ratio comparison
esser, relevant parts can be marked; the representing line segments are by
preference taken parale. This, however, is not the only way. Two trees beside
each other (Figure 40) that are in fraction relation, which can be stated by
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Fig. 40.

measuring or using intermediate scaes, two books with thicknesses in fraction
ratio, ages on the time axis; weights on the scae of the spring balance are other
examples. Most of these representations show more than one linear extension,
which means that the other extensons can dso be discussed. They are not as
thin as pure lengths, indeed.

Thinner lengths can be stylised by low rectangles, strips which are the same in
one extension and variable in the other (Figure 41). In order to systematise this
and to facilitate comparison, one may draw the rectangle on a squared paper
background (Figure 42), where comparing is reduced to counting. But again,

3

—
Fig. 41.

Fig. 42.
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this should not be the only way. One should admit figures which overlap or run
counter to the squared paper structure.

| stress once more that in dl these cases the pairs of geometric objects —line
segments, planar domains — can be present in their own right to embody frac-
tions or they can be representatives of other kinds of pairs of objects — two
trees, two books, two heavy bodies, two time intervals —which are to be under-
stood in their fraction relation. Then quite concrete couplings can arise: weight
and price on the balances in shops, weight in the scae and length on the beam
or on the scae of the spring balance.

5.9. Models of the Ratio Operator

In the most natural way,” <- of " is redised by two figures, one of which is< of
the other inlength or area. Y et thisprocedurerepresents” %of " unsatisfactorily
a an operator. It is as though one would illustrate a function not by agraph but
by one point of the graph. For a linear function this is, indeed, enough, but in
no way does it satisfy our expectations. To show the action of “ %of " inits
whole domain, other devices are needed.

The most popular device today is to suggest a machine —in the present case
it would be the" -2— of ” machine. It is most often merely a verbal suggestion
illustrated by a conventional picture. The input of the machine is numerical
data, which however can ds0 be represented geometrically. The machine itsdf
does not show any structure, geometrica or otherwise. It is a “black box”. As
far as my experience extends, textbook authors, teachers, and pupils use these
machines merely verbally, with no relation to any concretised fraction operation.
It ismy impression that the machines owe their origin to attempts at introducing
the concept of function rather than functions as mental objects; the false con-
cretisations which are then unavoidable have adopted here the form of a pseudo
concretisation: a verbal suggestion.

More concreteness is provided by the picture of flow distribution in order to
embody fractions (Figure 43). As a matter of fact, the magnitude flowing

N2

Fig. 43.

in and out, exigts only in imagination —it is replaced, asit were, by an indefinite
time — but the branching image can portray the fractional part (and its comple-
ment) with a geometrica precision.



FRACTIONS 155

Whichever model is chosen, oneis free to interpret it arbitrarily, for instance,
the flow image as length, weight, money, and o on.
5.10. Mapping Models of the Ratio Operator

A complete geometrical as well as globd picture of the fraction operations is
obtained as soon as they are genuinely interpreted by geometrical operations.
If in order to do so, lines are mapped, there are a few possiilities, dl of them
affine mappings (Figure 44).

A

Fig. 44.

central projection of parallel lines (lamp shadow),
parallel projection of, say, orthogonal lines (sun shadow),

composition of two pardle projections (such as used in the graphic re-
presentation of a linear function).

Performing the geometrical constructionsin detail can be both advantageous and
disadvantageous. dl the details become conscioudy clear, but the procedures
areprotracted.

A more attractive way isto use

planes, rather than lines, that is, projection planes.

The detailed constructions are even more difficult to perform, but they can
readily be dispensed with if the pictures are differentiated to show clearly which
points correspond to each other in the origind and the image (Figure 45). What
| mean is two pictures beside each other, one an enlargement or reduction of
the other, where the same ratio relation can be stated for each particular detail.
The same can be done in three dimensions by building modelsin different scaes.

A danger one should anticipate if one uses such two- and three-dimensiona
representations is the possble confusion of length, area, and volume ratios.
Nonetheless even if it is ratio of lengths that matters, planar figures are to be
preferred as means of representation because of their more globa expressiveness;
in order then to stress length, one can relie on two artifices:

as planar figures one chooses narrow strips, which are transformed accord-
ing to length only, while places are distinguished by means of ornaments,

or one takes plain two-dimensiona parts, which are transformed according
to both extensions, and to which one attaches drawings that suggest one
extension, such asworms, snakes, whips, spectacle frames.



CHAPTER 5

156

Sy 81




FRACTIONS 157

5.11. Mathematical Theory of Rational Number from the Point of View of the
Ratio Operator

It is well-known how rational numbers are introduced, starting with natural
numbers (or integers): one considers pairs (“fractions’) of integers with a
non-vanishing second member and prescribes an equivaence relation

"m, il ~Tmy, n; V<> mn, =myn;

rational number are then the equivalence classes of these pairs. The arithmetical
operations are defined appropriately for the pairs, and accordingly for the
equivalence classes.

| now sketch how it is done if the multiplication operator is chosen to start
with, and an a priori genetic rather than a posteriori axiomatic way is followed.
Fractions then are not the result of a definition; instead they are discovered
and described.

We consider a magnitude S and within S multiplications by natural numbers
(# 0), which form a set M, with composition as an operation in M. M then is
a

commutative semigroup
withidentity and a
cancellationrule: gex=aoy->x=y.

Such semigroups can in genera be extended to groups, which is easily proved.

In the present case it is even easier because the elements of the semigroup
are given as multiplications within a magnitude S. | display the sequence of
steps (l.c. itdics stand for natural numbers # 0):

(1) “k times’ isaone-to-one mapping of Sinto itself.

2 Theinverse of “k times’ iscdled “kth part of .

(3 All the “k times’ form aset M; the “kth part of” aset M.
) (k times) o (m times) = km times.

5) M is closed and commutative under composition.

(6) Given a st Tand one-to-one mappings ¢, Y of T on itself, then from
po Yo Yoyt =identity
one concludes:

If ¢ and ¥ commute, then ¢ and Y™ do s0 also, aswell as ™ and
Y7L, moreover (peo ¢) 1 =yl o,

W) Applying (6) on Sinstead of T and two elements of M instead of
@, ¥, One gets
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M U M with composition as its operation is commutative.
€] From the last part of (6) it follows that

(nth part of) o (mth part of) = (nmth part of).
9) One defines

<L:- of) = (m times) o (nth part of),

which according to (7) can aso be written
= (nth part) o (m times).

Here —'nl is not yet meant as a symbol for a rational number. It is
rather an arbitrary symbol, expressed by means of m and n.

(10) The multiplication rule
m k _ {mk
<—n— Of) o (—l— 0f> = <—YIT 0f>
is derived from (9), (8), (7).
K _ .
a1) (—k- of) = (1 time)
follows from (8) and (2).

(12) The cancellation rule
mk ._m
Y of= - of

follows from (10) and (11). This alows one to introduce rational
numbers as classes of fractions.

(13) The @Z— of) form a sa N, which according to (11) is closed and

commutative.

14 ( —';'— of ) is a one-to-one mapping of S onto itself with {-% of) as

itsinverse.

(15) Nisacommutative group of one-to-one mappings of Sonto itself.

It looks awfully complicated, though it reflects nothing more than the
occurrence of rational numbers in multiplication operators; addition is lacking,
and the rationa numbers are not yet freed from their operator formulation.
However, the preceding sequence should not be understood in the way that
any of its steps would be made explicit, except if it is done paradigmatically.

If we take a closer look at what is didactically required in this line of thought,
then we get the following sequence:
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the mental object object “one-to-one mapping”, abeit specidised to
stretchings and shrinkings of the number ray,

the mental activity of composing and inverting mappings,

the recognition of “k times’ (for paradigmatic k) as a one-to-one mapping,
and theidentification of certain mappingsas “k times’.

the view of, and identification of, the inverse of “k times” as  “kth part
of” or* ;of " (known as such from the division task),

the mental composition of “k times” and “m times” (for paradigmatic k
and m) and the recognition of the result as “km times’,

the mental composition “nth part of” and “mth part of” (for paradigmatic
n and m) and the recognition of the result as “mnth part of ”,

the definition and recognition as a mapping of %of " & composed of
“mtimes’ and “nth part of”, in arbitrary order,

the mental composition of % of ” and* —’lc-of " and the grasp of the
multiplication rule,

the grasp of the cancellation rules,
inverting* <2 of "into “ Z-of ”.
n m

The only steps of the mathematical analysis that do not figure in this imag-
inary didactica sequence are those where commutativity is ascribed to certain
pairs of mappings. In most cases this property is so obvious that to make it
explicit would cause confusion. The only case where it is required to do this
is the commutativity of “m times’ and “nth part of”.

It is perhaps surprising that in the mathematical andyss the inverse of “m
times’ is not immediately caled % times” but —,1; of " — mathematicaly
viewed, nomenclature is not bound by any rules. We did so, because — as has
been added in parentheses — the inverse of “m times’ must be first identified
with the familiar and visudly rooted “mth part of”, and labelling this inverse
by “ % of " requires amotivation which must be prepared carefully.

The preceding approach can hardly be compared with that of introducing
rational numbers as equivalence classss of number pairs, the approach by
operators follows a didactical sequence, whereas the one using equivaence
classss accounts formally for an already acquired arithmetic ability.

To what degree can the sequence described above and justified mathematically
be redised? Well, this is a badly formulated question. As a matter of fact, this
sequence must be implicit in any didactics of fractions — it is rather a check
lis. The proper problem is that the sequence is fleshless. Redtricting onesdf
to this list would be a hobby, inspired by a mistaken hunt for purity of method.
The sequence is fleshless, its basis is too narrow. It is walking with blinkers
which, for that matter, do not sufficiently protect one againgt disturbances.
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Both the mathematical and the didactical sequence start with mappings
(multiplications) in a magnitude. This magnitude must be specified somehow,
and the most obvious specification is length, visuaised as a number ray (or
number ling), which we may suppose to be familiar to the pupils. There muilti-
plications by natural numbers are readily recognisable mappings, as are their
products and inverses. This intuitive recognisability, however, is insufficient;
communication requires verbalisation, which initialy might be ostensive, but
gradually should be refined by means of relative and functional linguistic
devices* A system of arrows from (variable) x to mx to show “m times’ re-
mains locked in the ostensive sphere. More sophisticated linguistic devices are
required; for instance,

indicating a point by A,
its “mtimes’” image by mA,

D P 1

its ;of image by -’;A,
ea My m
its" — of ” image by 7A,

which boils down to plotting positive rational scales on the number ray and put-
ting them into amutual relation.

This could be a quite useful exercise in detail if it were not for the fact that
the number ray is aready familiar to the pupils as the infinite ruler, where the
natural numbers are lodged, perhaps even intercaated by some fractions. This
presence cannot be obscured. In fact, it even gets systematised: by applying
the operation“= of " on the natural numbers, which may be assumed to be
prefigured on the number ray, dl the rational numbers on the number ray come
into being. This would not be inconvenient were it to occur rather later. Asitis,
the rational numbers now fulfill a double task: numbers lodged on the number
line as well as linguistic parts of ratio operators. Of course, in the long run this
is unavoidable, and at a certain moment this consequence must be accepted and
made conscious; but then one must be able to choose this moment such that
the consequence can be made conscious in order that the rational number can
play its double role well and in an undisturbed fashion.

This, however, is not the major objection againg the fleshless didactical
sequence. Intentionally | had the fractions marching on a broad phenomeno-
logica front. The phenomenologicd wealth should be put to good use. The
steps isolated in the mathematical sequence should be taken not in abstracto
but in a variegated context. Even if each of the steps could be taken paradigmat-
icaly, one should not expect that the didactical sequence in which | try to
redise the mathematical one didactically automatically contains the wanted
paradigms.

*  Weeding and Sowing, Chapter 1V, Section 15.
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| wish to add that besides the didactic redisation of the mathematical se-
quence room must be created for

adding and subtracting fractions,
isolating the fraction as part of the ratio operator,

replacing * of ? by“ times’.

Even then | would not yet have accounted for the agorithmisation or formalisa
tion of fraction arithmetic.

| am now going to sketch a rich didactical sequence for the arithmetic of
fractions.

5.12-13. A Rich Didactic Sequencefor the Arithmetic of Fractions

5.12. Eight bottles of beer, three persons and each of them gets his fair share —
a ten-year old girl reacted to this problem by setting up along divison and then
reproaching me that it did not terminate. To my answer “yet they did shareit”,
she reacted as though she had awakened from a dream — suddenly she noticed
more things between heaven and earth than are dreamt of in the arithmetic
lessons she had had so far.

She drew sketches of eight bottles beside each other, divided each of them in
three parts, gave each person eight thirds — in fact she did not know this word,
but said “little bottles’ — and because it was suggested by the total problem
she gave the leftmost to A, the rightmost to C, and the part in between to B.

Possibly there would be pupils who assgn dl the lowest thirds to A, the
middle ones to B, and the highest to C. “ Can it be done otherwise?’, may be
asked. The children track down a rich variety of solutions. (Permutations dis-
regarded there are 280, but it is not the aim of the question to find dl of them.)

The same problem can be posed with other numbers. It is practicularly
instructive to deal with the following ones next to each other:

24 hottlesand 5 persons,
26 bottlesand 5 persons.

In avisual context the children learn
with respect to an m-partition changi ng wholes into mths (for smal m),

using additive splittings k into k4, +. . .+ k; with aview to getting additive

kz

k‘ ot exercising, in particular, the splitting

splittings ; into
off of wholes.

The initid notation is k mths; the notation i is of a later date. If wholes are

solit off, theinitial notationswouldbe1 +1 +-2,2 + % to finish with 2%.
Theamisto
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transfer addition, subtraction, order relaion from N isomorphicaly to

—I-N (x —>l>.
m m

while dackening the visua bond, this can be supported by tableslike

o 1 2z 3 4
12 12 12 12 12
= —-_1- =—1— =—l—
=0 3 4 3

At this point smplifying fractions with denominators like 12, 24, 60 can be
practiced.

Then tables are again visudised on the number line where corresponding
pointsarejoined (Figures 46 and 47).

4 4 2 3
3 3 z —_
™ A ¥ 7
\\ \ i //
N \ ! .,
N \ ! e
N \ / 7
NN, 4y s
A
No¢ g2
‘\\,”"
N
Fig. 46
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Multiplications can be prepared as repeated additions; after posting

3

ask the quegtion: “How can you say thisin other ways?’
Cautious examplesof division:

win wle wle

L2
3

L2
3

L2
3

2
+——-
3
#2142
3

2 4 6
halfof?, of?, of?,

and even more cautiously

athird of %

5.13. The beer is distributed among couples and after the distribution among
both members of each couple — a somewhat more compact sequence than the
former, which ams to

transfer addition, subtraction, order from %Nto l%N (x-* ~;-x) and to
understand the isomorphism x - p—lmx as the product of the isomorphisms
x - lx and x - lx.

m p

The same situation visualised by tree or flow models yields Figure 48.

8 bottles

21/ 22\
NANNANVAN

Fig. 48.

5.14 A picture of aflock of sheep; the farmer sdis one out of three (that is, %).
Strike them out. What is left? If it had been 120, how many were sold, how

many left?



164 CHAPTER 5
1 -2 -
70f120— 3 of 120

Thefield of hundred: Colour %of the squares red. Can it be done differently?
Colour—,?j- red. Can it be done differently? Find beautiful patterns!

The same with awdl of bricks — indefinite whole.

A lottery with 1000 lots. One out of five wins. How do you fix which ones?
One of the five gets at least its stake back, one third of these gets double its

stake. How many?
There are 10 first prizes — that isone out of ... ?
Take a strip; fold it in two, three. What part is the folded strip of the origina

one? Fold it such that it is one sixth.
Strips below each other in a visud ratio m : n. If one isworth A, how much

is the other?
The am of these problemsis

Recognising and evaluating cases of the function x -~ %x in numerical
wordings and visualisations.

5.15. S far-% has occurred systematically as a number only in measures like
< bottle, 2 strip. The following aims a

congtituting, constructing, recognising the function x - %x.

Here is the tree A.

Draw treeB hdlf astal asA.

Draw tree Cthree times astdl asB.
Draw treeD one third of tree C.
Draw treeEfivetimesastdl as D.
Draw tree F one third of E.

| can dso write
B=% of A,
C=3timesB=...A4,
D=1 ofC=...B=...4,
E=StimesD=...C=...B=... 4
F=5 ofE=...D=...C=...B=...4
| possessa

lens O through which | see everything 3 times as big

and a

lens Xthrough which | see everything —;-as big.
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| look at the flower through both of them in a row (Figure 49).

é*éo X?é

¥ X VI
OR
5 times 3 times;

Fig. 49.

What is the result in both cases?
A variety of examples should serve to

5.16.

exercise the compogtion of the function x - mx, x —>—x in an arbitrary
number, V|sually supported as well as numerically |solated for instance,
evauating(+ of) (5 times) (-% of) (2 times) applied to lengths and
numbers, an& recognising it as % .

The following serves to

replace" 7 of » by“”’ times’.

As has been mentioned earlier, most of the textbooks do not care to motivate
this equivalence. It is annoying that “three times’ is a natural operation, asis
“5 of ”,whereas the vernacular does not account for their similar character.
There is, however, one opportunity, as noticed earlier, where everyday language
— as far as | know, every language — admits of the passage from “ 2 of " to

“ 2. times”, that is, in cyclicprocesses: "

turn the key 2L times |n the keyhole,

the big hand has gone 31 3 | times around the clock,

the satellite has turned 10 tlmts around the earth —where isit now?
the merry-go-round hasturned 54 times,

%0 hasthe big wheel —where are you then?

Irregular circuits at the fair,
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the roller coaster,
the haunted house,

alow the same questions, as well as forth and back movements,

3+ times swung forth and back,
3—;- times travelled from A to B.

This “times” can dso be interpreted as amultiplier of numbers,
3—;- times around the clock — how many minutes?

around the clock is 60 minutes, 3%around the clockis...?
10 times around the earth lasts ... ?

—onetimeslags....

5 % times the merry-go-round —how long doesit last, how many horses?
3% times from A to B, how much does it cost?

And the winding Stairs
52 times around, how many steps?
From the cyclic to the periodic processes,
3% hundred times ticking (typing, turning of the odometer, jumping)
and to rolling a wheel
how far after 1,2,3 times around, 14,23 times?
Thisleads in anatural way to
15 times, 22 timesagiven length,

which can dso be given numericaly.

S0 a natural language of “1—;- times’, “2% times’ is established. As examples
so far | have taken mixed fractions, which I think is didactically important. In
4 % times the whole part 4 suggests what operation should be performed, and
—Z is dragged aong. In the progression of the didactical sequence, however,
proper fractions should become more frequent.

5.17. Now
oo and “ 2 times”
n n
are 9de by side; finaly they shdl
be identified with each other.



FRACTIONS 167

This can be done by applying them where both are meaningful (Figure 50):

o 570 202530 6o /20
Fig. 50.

—; times 60 (round the clock) = -.1,— of 60 (the line segment)
22 times 60 (round the clock) =22 of 60 (the line segment).

Itiscritica that

the identification is made conscious

in order to recdl it if mistakes occur. Likewise
conscioudy: = of 1 =% timest = %.

Identifying the fraction in the fraction operator and the fraction as a rationa
number is, however, delayed. 5 was introduced as

“5times 4 of ” or “% of 5times’.

It shdl now become
conscioudly: “5times 5 times” or “3 times5times’.
In general, other examples shdl be repeated in order to

conscioudy replace -';1 of” with “ % times’.
5.18. Given a point A on the ray, the rational scde of the _': A issystematicdly
constructed — the expression is read as 5+ times A.

0 A 1A A A 34 %’A 2A

In this picture (Figure 51)
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to apoint _’5’ A
the “m times” image,
the - times” image,
the* 2~ times” image

can be located, such that

to the scae of the rational multiples of A the operation * % times’ is

in order to vaidate the formula paradigmatically

m Py-m'p
n q n-q

From this, by chopping A the

A.

multiplication formula

m.p_mp

n q nq

paradigmatically made conscious.

Exercisesin specid cases such as

m . i =1’
n m
m . n_m
n ) ]
areincluded.

5.19. It seems natural to havethe division of fractionsjoin this sequence, namely
as the inverse of the multiplication
(7x)ax =b.

Inthecase b = 1 this problem was s0lved &t the end of Section 5.18:
(™x)ax =1

is solved by turning the fraction, representing a, upside down, and in order to
olve

(?x)ax =b,
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this result has to be multiplied by b. This, however, does not answer the problem
of division of fractions didacticaly. Any hint that dividing is somehow related
to redlity is lacking in this approach.

Interpretingb :aasa

distributivedivision,

that is, as a partition of b into a parts is equaly meaningless unless a is an
integer. It is more to the point to understandb : aasa

ratio division,
answering the question
how many times does afit into b?

for instance, if both of them are visualised aslengths. But then it is even more to
the point to ask this question honestly in the context of ratios, which we will
enter in the next chapter. Let us presuppose this context for a moment as a
didactical precondition, with the operational conclusion:

the divisonsb : aand bc: ac (¢ # 0) are equivalent,

that is, have the same solution. This is indeed an important principle, which does
not become meaningful until fractions are a stake — it would not hold for
divisonswith aremainder.

Of course this principle can dso be motivated if division is understood as
the inverse of multiplication:

ax=b and acx=bc (c#0)

do have the same solution x. As well as in the context of “ratio” the principle
can aso be motivated with simple approaches, such as

—23- fitsinto % asoften as 2 into 4
—%— fitsinto 6 as often as 2 into 18,
% fitsinto £ as often as 4 into 7,

% fitsinto % asoften as 5 into 12.

The gig of this principle is that

reducing divison of fractions to that of integers
via fractions with equal denominators

—aprocedure that isformally equivaent to
multiplying with the divisor turned upside down,
though it is didactically better motivated.
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5.20. Adding, subtracting, and comparing of fractions are supported by the
image of the number line, such as that prepared in Section 5.12:

understanding visualy the mutual situation of

1 1 .
TN and 6N’

finding for paradigmatic p and g oner such that
1 1
are comprised in% N.

Adding, subtracting, and comparing are, according to Section 5.12, per-
formed within one% N, which is produced in esch particular case.

5.21. Combinations of additions and multiplications are exercised in flow
models (Figure 52):

Fig. 52.
5.22. Findly the attainments are exercised in enlargements and reductions.

Pictures 1, 11, 111 of the same object,

trangtion from | to Il by multiplication with factor a,
trangition from 1l to 111 by multiplication with factor b,
from | to I11?

(a, b paradigmatic fractions).

5.23. In the traditional didactics of fractions the multiplication is tied to the
rectangle pattern rather than to the fraction operator. In our particular didactic
sequence we chose the fraction operator; in this structure the rectangle model
is not easily accommodated. This does not mean that it should be neglected. It
can be linked to 5.20 if it does not come earlier, though certainly not in the
restricted traditional form of mere sub dividing one rectangle.

The following didactic sequence is based on a previous treatment of areas
of rectangles and Smilar figures (Figure 53). It is embroidered onto the pattern
of

the cartesian product of -}l- N ;and% N.
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2L_'L_;_-L_:_:_ -
2 4 '
L i | 1
// t : 1! !
Gi--T-r+-F+
,J 2I lal |
©%BI1%%2 %
Fig. 53

The standard problem is

calculate the area of a rectangle with sides - and —Z .
This can bejoined by a sequence:

given arectangle, find others with the same area.

These rectangles are constructed with a common SW corner and assembled in
tables (Figure 54)

al b
— 2
1 {1 2
1
-‘;2-4
1
b Ll
2
| 3|3

Fig. 54.
Another version,
given arectangle, find rectangles with a timesits area.

This sequence will be reconsidered in the section on area of Chapter 13.
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5.24. Decimal Fractions

As early as in Stevin's* proposals the decimd fractions have been dosdy con-
nected to a decima system of measure. They should again be dealt with in that
context and then problem should be tackled like Why both common and
decima fractions; the precision and the rounding of decimal numbers; percentage
and permille (per thousand); the standard notation. Here we restrict ourselves to
subjects closdly related to the approach of Section 5.12.

The decima fractions are consecutively introduced as elements of ever finer
nets

110 * 31 written as 3, 1),

100 N (mo 314 written as 3, 14),

N (s=z= 3141 written as 3,141),

1000 1000

and 0 on. These transitions are paraleled by those from mm to cm, dm, m,
., and from g to dg, hg, kg, and s0 on.
The connections are again made between the layers

1 1
N.7% 10 N. Too 100 N, 1000 N,...

that is
-1
a= 35 10a, and so on,
thus

3,14 =3,140, and so on.

Addition, subtraction, comparison are performed in each net

1 1 1
10 N, 100 N, 1000 N

separately. The multiplication ties two nets to each other. Because of

1 1
Top a m b= 10p+q ab (ﬂGN,bEN)
one gets
1 1 1
10P N 109 NC 10P+4 N

* Simon Stevin of Bruges in hisbooklet La Disme (1585).
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The agorithm of multiplication is augmented with a
rule about placing the decimal point.

In divisons one takes care, according to 5.19, that dividend and divisor
belong to the same net; that is, transforming the problem into the form

which is equivdent to
ab.

5.24a. A Didactic Remark

In remedial teaching and observations at teacher training institutions (cf. Section
4.364), it occurred to me that the usua didactics, which aims at teaching rules
for the place of the decimd point, can lead to ablock of insight and of the need
for indgght. Once these rules have been formulated and learned, it is dmost
impossible to correct wrong applications by an appea to indght. If they are
needed, such rules should be the terminus of a development, which cannot
be accelerated artificialy. The rules should be understood on severd levels.

The lowes is to gtart with the explanation that to the left of the decima
point are the wholes and that the decima point is followed on the right by the
tenths, hundredths, and so on, and preceded at the left by the units, tens,
hundreds, and o on. Multiplying by 10 and dividing by 10 change units into
tens and tens into units, respectively. This can be illustrated by an abacus with
a decimd point. Equaly useful is aladder of refinement

1000
100
10
1
0.1
0.01
0.001

which can be related to the measures in the metric system. Multiplying and
dividing by 10, 100, 1000, ... are experienced as an action on this ladder. This
prepares mutual multiplying (positive and negative) powers of 10. It may be
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asked when the usua notation for powers of 10 should be introduced (cf.
Section 4.368). However written, multiplying and dividing (positive and nega-
tive) powers of 10 should precede the forma introduction and the training of
multiplying and dividing decima fractions in general. The reduction of multi-
plications and divisions in this domain to those in N by means of extracting
powers of 10 deserves to be preferred above memorising rules about placing the
decimal point.

5.25-26. Decimal Devel opment

5.25. The divison of decima fraction is by this means reduced to that of
integers, that is, to what is caled the

development of b : a, or the fraction b

i in a decima fraction,
which can be of infinite length.

So far decima fractions have been dedt with as fractions with powers of 10
as denominators, which means that a divison or a fraction is to be transformed
from

b e

PRSTH
In order for this to be possible, the fraction in its smplified form must possess
a denominator that is a divisor of a power of 10; that is

the denominator may possess no prime factors other than 2 and 5.
Other fractions do not admit of such a—finite — devel opment.

Transforming
a 107

is performed by means of a divison
10"b :a=e,
based on

that is to say, a the dividend and finaly at the quotient one passes to L s

new units before performing the division. 107
In fact this happens successively:

after the first divison of b by a the units of the remainder are changed
into tenths, with which the division is continued; the new quotient, being
a number of tenths, is put in the first postion to the right of the decima
point;
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the remainder is changed into hundredths, with which the divison is
continued; the new quotient, being a number of hundredths, is put in the
second position to the right of the decima point; and so on.

If the denominator has no prime factors other than 2 and 5, the procedure
terminates with the result wanted. In other cases, an infinite decima fraction
comesinto being,

l -
i 033...
1
7
What is mathematically relevant here differs much from what has been dealt
with so far in this didactical phenomenology. It belongs to number theory and

infinite series, which, however, does not exclude a phenomenological approach
that fits into the present frame.

=0,142857142857 . ..

5.26. There is a this moment no need to place the infinite development of
fractions into the frame of infinite saries or, for that matter, into that of infinite
decima fractions in general. This can be resumed later. There is equally little
need to gpped to number theory in order to explain the periodicity of the
development. It is done in a more elementary way.

A divison by n produces a every particular step a remainder which, con-
sider as an integer, is a number <n. So among the first n partia remainders
there are & least two equa ones. There is a first time in the sequence of
remainders that a remainder equals a previous one. Let us assume it is the jth
that equas the ith. But then the whole procedure runs from the jth onwards
as it did from the ith, that is, the piece from

the ith to the ( — 1)th quotient

repeats itsdf periodicaly. The decimad development of a rational number
eventually becomes periodic.

It can be
purely periodic

or the period is preceded by an initid segment. Examples of the first kind;

=03... —,1,—=O,142857...;

1
3
of the second kind;

=

=0,166 . .. —31—5 =0.285714285714 ...

How can we predict what happens?
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The examples suggest: The decimal development of the — simplified — frac-
tionis
purely periodic or not
according whether the denominator n

doesnot or does

have a prime factor 2 or 5.

This appears to be correct: The period of the development of == comesinto
being when for certain i and j the remainders after the ith and jth division are
equal, which means that

10‘m and 10/m leave the same remainder,
when divided by n. In other words,
10/ —10)m is divisible by n.
If n does not have prime factors 2 and 5, thisimplies that
(10/=!' — p)misdivisible by n,
thus
10/=*m and m leave the same remainder,

when divided by n. Thus the period starts immediately after the decimal point.
Conversely: Take a purely periodic development, with a period of, say,
length |. Let the period itself, considered as a hatural number, be c. Thus

L2 % W
a 1of T 1020 T )

The expression e between the parentheses can be calculated as follows

100e=1 +e,
thus
o= 1
10l -1
thus
Ln_= (4
n 100 -1~

Now 10 — 1 certainly does not have prime factors 2 or 5, nor has n. Thus

if the development of — simplified —% is purely periodic, the denom-
inator n does not have prime factors 2 or 5.
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5.27. Other Bases

With respect to becoming acquainted with and working in postiona systems
other than the decimal one, the arguments of Section 4.43 can be repeated,
though a certain difference is worth mentioning. In general, one may not expect
that a change of basis creates more insight, even with regard to terminating and
not terminating developments. If it has been understood which denominators in
the decima system lead to infinite developments, why they are finaly periodic,
and which cases are purely periodic, the transition to a new base g can open
new perspectives. The divisors of 10 are replaced with those of g, and this has
different consequences according to whether g is a prime number, the power of
a prime number, or otherwise composite. It depends on the total instructional
situation and in particular the specia group of pupils concerned whether the
indghts acquired in such a course are worth the trouble of introducing other
positiona systems.



CHAPTER 6

RATIO AND PROPORTIONALITY

6.1. A Preface in Between

A first verson of the present chapter has been the first specimen of didactical
phenomenology that | produced — in 1973 in German. The immediate cause
was a theoretical exposition by an educationalist on instructional objectives,
where as a paradigmatical example the author dealt with ratio. He chose this
example because in the larger work from which it was borrowed, it was a subject
that could be covered by just one objective. | have repeatedly argued that
formulating instructional objectives should be preceded by observing such
learning processes as could reveal what is being, and thus what should be,
learned; and that for observing learning processes as well as for educational
development an indispensable precondition is a didactical phenomenology.
At that time instructional objectives, however, were distilled from prevailing
textbooks and test collections. In order to show how much is lost by this
approach, | seized upon “ratio” as an example to explain what didactica
phenomenology is or should be. Whoever reads what | wrote at that time —
and it does not sound much different in the present version — will be struck
by a tightness of style that was not my habit. With hindsight | should say that
this style was conditioned at least as much by the specia subject as by my
intention to write a specimen of didactical phenomenology — later on | will
give ressons for it.

In May 1975 | lectured in Berlin. It was the first time that | met Chrigtine
Keitel, with whom | had already corresponded. | told her about a manuscript,
which was later published under the title Weeding and Sowing, and about a
didactica phenomenology of fundamental mathematical concepts, which would
be my next undertaking. | promised her a work written in a rigorous scientific
style, with no regard to legibility. Christine implored me “don’t” with an inflec-
tion, as though she meant “you are not obliged to”. For along time these words
preyed on my mind.

In the summer of 1975 the chapter on ratio existed, as well as aprovisiona
sketch of “Fractions’, but the first chapter had ill to be started. “Sets’, of
course. | struggled with it but | did not succeed. The subject was refractory and
the tight style, which | had mastered successfully in “Ratio” deserted me. |
did not write asingle line.

| made up my mind. No sets. Numbers — no. Geometry — no. Finally | chose
“Length”, and after a short while the chapter was conceived in detail. (It shows
gaps, it should be rethought.) But again | could not write it —that is, not in the
tight style of Ratio — an ided that fettered my mind. Should | straightjacket

178
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a subject that was not created for it, only to have it look in away that was not
its nature?

Moreover, | was not obliged to. | need not assume scholarly sounding
language to raise expectations of depth. | do not start a career where such a
language would mean a recommendation, and | do not feel happy providing
work for generations to come who would fathom depths in unreadable work.
My spiritual portrait is established, and my ideas on what is scientific need no
correction. Smplex veri sigillum — | trandlate it as. what is true may be said in
plain language.

| knew what to do, but | ill did not know how to do it. | read and reread
“Ratio”. It looked good and well-written. It was clear and the style was honest.
Why could | not write the same way on “Length”? | tried formulations, to no
avail. Why, | must free mysdlf of this model. | knew “Ratio”, as it were, by
heart. | must close this drawer of my mind and open another.

S0 | decided to move from German to Dutch. | would write the phenomenol-
ogy in Dutch, in order to trandlate it afterwards. Language is an infection. Dutch
is the only prose in which | never tried profundity.

After | had taken the decison on the language, fresh arguments emerged. The
phenomenology had been started and was intended to help the developers a
my side in their everyday work and in discussions about it; nobody else would
profit from it in the short run — translated or not. It was meant for our col-
loquia talk and would be written in our colloguia language.

This was a preface in the wrong place. Another will be written when | look
back on thiswork.

6.2. TheLogical Satus of Ratio

Belatedly | understood that the logica status of ratio is far above those concepts
discussed <0 far. | also understood why | should separate ratio from fractions.

Ratio is a function of an ordered pair of numbers or magnitude vaues. So
are sum, difference, product, and quotient, but they are s0 in an agorithmic
sense: there is a recipe to figure out the function value assigned to a particular
pair, or at least to act as if you had — indeed, what do you figure out if you
answer 3 : 4by 27

Ratio can dso be figured out: transformed into a quotient, that is reading

as3isto4

3 divided by 4,

but this is the rape of ratio. Then ratio is deprived of what it makes valuable as
ratio.

Ratio is a function of an ordered pair of numbers or magnitude values. But
what about the values of this function? Again numbers, values of magnitudes?
One can interpret it this way, though it is the wrong way. Indeed, this would
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identify ratio with quotient. It is the meaning of ratio to speak about equdity
(and inequality) of ratios without knowing how large the ratio is, to be able to
meaningfully say

aistobascistod
without anticipating that
aistob
can be reduced to a number or magnitude value
a
b >
which then for
cistod

isthe same;
a_c

b d

With the opportunity offered by numerosity and length | stressed that the
recognition of equality and inequality, of bigger and smaller, phenomenologicaly
precedes the operation of adding and measuring —it is a pity that this smple
fact is impaired in its credibility by wrongly interpreted conservation principles.
If ratio should be taken as serioudy as numerosity and length, then equdity and
inequality, bigger and smaller, should play a smilar role. Anyway the phenom-
enologica exploration should uncover the same roots.

If these suppositions are confirmed — they will — then the logical status of
ratio in its phenomenologica context would be paraphrased as follows:

ratio is an eguivalence relation in the sat of ordered pairs of numbers
(or magnitude vaues), formally indicated by

a:b=c:d
if the pair Tz, 7 is equivalent to the pair Fe, d7.

We do not formulate the (axiomatic) postulates to be fulfilled by this particular
equivalence relation.

It is a fact that after choosing a unit e the equivaence class of the pair faz, 4
can be expressed by one number (one magnitude value), namely that u for which

a:b=u:e,

but this approach is an a posteriori insight, which in fact matters only if e does
not depend on any arbitrariness (for instance, if it is the numerica unit). A
priori, ratio depends on two data, and consequently each proposition on ratios
—proportionality — dependson four of them.
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This complex behaviour was what | meant when in the first paragraph of the
present section | placed ratio, as regards its logicd status, high above other
concepts dedt with before them. Quotients and fractions are a means to reduce
this complication, to lower the logical status, at the expense — as it happens —
of insight. One may doubt whether fractions can be insightfully taught if insight
into ratio is lacking — it is this doubt that influenced the composition of the
chapter on fractions. The influence could have been stronger, but | did not
dare integrate the phenomenological analysis of fractions and ratio. Should |
not follow the chapters “Fractions’ and “Ratio and Proportion” by a chapter
“Fractions, Ratio and Proportion”?

The logical status of ratio which | explained here implies that “ratio and
proportion” is more intensive mathematics, mathematics on a higher level than
what has been discussed so far. This fact, | think, influenced the tight style of
my first example of didacticadl phenomenology. By the choice of subject, the
most mathematical & an elementary level, | found my mathematica bread
buttered on both sides. Rather than by my desire to write a didactical phenom-
enology, the tight style was suggested by the choice of the subject. The attempt
to imitate it with other subjects was badly motivated and doomed to failure.

The reader will have to content himself with this chaotic alternation of styles.
It isrooted in subjects and views on subjects, rather than in states of mind.

6.3. Ratio as a Relation In and Between Magnitudes

In order not to overburden the exposition of the most relevant idess, | start with
a few concepts, terms, and notations. | will use a rather loose language, with a
minimum of formalisation. For instance, | will spesk of equal sizes if objects
of equa sze are intended, of equal distances, weights, times where | should
properly say: paths of the same length, bodies of the same weight, intervals of
the same duration. It can even happen that | speak of the ratio of two objects,
where it should be the ratio of size, volume, or weight of the objects, or of the
ratio of two metas in an dloy rather than of that of their masses.
| start with aheavily mathematised example,

uniform motion:
@] in equal times equal distances are covered,
which is equivalent to
(2a)  distances arein proportion to times,
as soon as motion is assumed to be continuous, asit should be;

(2b)  distance is proportional to time

is only another wording of (2a), and
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(3 the distance is alinear function of time

is again another formulation, asis

4 speed is constant,

though it looks different.
A brief comment:

From (1) it follows:

in twice the time twice the distance is covered,
in thrice the time thrice the distance is covered,

and more generaly
in n times the time, n times the distance is covered.
Let

s=f()
be the distance as afunction f of the timet. Wejust noticed:

f(nt)=nf(t) forn€N.
Replace t with —rll-t.Then
f()=nf <%t> ,
which read
7(%1) = 110,
yields
in % of the time % of the distance is covered.
If in the last formula t is replaced with mt (m € N) one gets
7( 1) = r0m) = 2100
Thus for each (positive) rational a:
in atimes the time o times the distance is covered.
Continuity guarantees the same for rea instead of rational o.
Take two times ¢, t. Put

a=t/ty.
Then
F@) : flto)=f(ato) : fto)=af(to) : f(to) =1t : to,
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which is the formulation (2a) or (2b). This can aso be written
F(@© = (to)/to)t,
whichis formulation 3, or

f(@)e=f(to)/to.

which is formulation 4.

There are two magnitudes concerned here: time and length; and a function f
that asdgns a length to a time, namely the length of the path covered in the
time interval. The ratios consdered here are those of pairs in one and the same
system (time or length); the ratios in one system are required to egua the
corresponding ones in the other — this is the postulate of the uniformity of
motion.

Wedesignate

ratios formed within a sysem asinternal

to distinguish them from the external ones that are discussed below.
If z;, £; aretimesand s, s, corresponding paths, the postulate of uniformity

say's
Sy 18, =t 1 t,.

If we are tempted to interchange the middle terms, we get
Syt =8; i,

again the equality of two ratios, albet ratios of path to time.
Wedesignate

ratios between two systems as external.
The uniformity of the motion is now expressed by the postulate
theratio “path to time” is constant.
Ratios can do be interpreted as
quotients.
In thisinterpretation

the internal ratio is a number,
the external ratio is a magnitude,

that is, in the present case of uniform motion,
the quotient of path and time: speed.

The whole reasoning, in particular interchanging the middle terms in a pro-
portion, is quite familiar to us. | ak mysef whether we sufficiently redise that
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it need not be as obvious to the learner. Former arithmetic instruction was quite
conscious of this jump. Rather than bridging the gulf, one invented two kinds
of division, ratio divison and distributive division. Together with this twin
monster the former awareness of this problem seems to have vanished, and
since no-one today is conscious of the mental jump from internal to externa
ratios, nobody raises the question as to whether it could not be too big for the
learner.

The geometrical tradition of Greek antiquity alowed formulations only with internal
ratios; algebraic operations or magnitudes were alowed only in a complicated geometrical
setting. It is a drawback of Greek geometry that, because of the lack of externa ratio,
interchanging the middle terms in proportions in general was not allowed and had to be
circumvented by means of complicated procedures. The ancient tradition has maintained
itself in theoretical sciences for long times. Outstanding examples of this habit are Kepler's
second and third laws:

in equal times the radius vector from the Sun to a planet sweeps equal aress;

the squares of the times of revolution are in the same ratio as the cubes of the long
axes of the orbits.

This tradition pervaded the theoretical sciences longer than it did commercia and technical
mathematics, where direct, non-geometrised algebraic operations and, in particular, external
ratios were admitted earlier; even today pure mathematicians often show little understanding
for calculationswith magnitudes.

| used uniform motion as a paradigm. The generaisation may be left to the
reader. It will be clear enough what | meant by

internal ratio (within amagnitude)
and
external ratio (between two magnitudes).

It isequally obvious that in mapping magnitudes,
invariance of interna ratios,
and the equivalent
constancy of external ratios
means
linearity of the mapping;
in our example,
uniform motion is a linear mapping of time on path.
The linearity of amapping f is correspondingly defined in two ways:
implicitly (postulatory),
to the sum corresponds the sum,  f(x +y) =f(x) +f(»),
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explicitly (agorithmic),
fx)=ax fordlxandacertaina.

Once more: dl this is s0 obvious that as mathematicians we do not worry
about it any more, but let us not expect that it passes by mere diffusion from
our unconsciousness to that of our pupils.

Things are even more involved: A uniform motion has dl time intervals of equal length,
wherever they might be, mapped upon equa path intervas. It is not explicitly mentioned
that the composite of two connected time intervals is mapped onto the composite of the
corresponding path intervals because it is implicit in the idea of motion. The same holds
for other pairs of magnitudes, such as volume and weight of some substance. If, however,
f is a function that maps magnitudes onto each other, | have aready abstracted from the
particular time and path intervals (and similar ones); they have been superseded by lengths
and durations (and suchlike). So | am obliged to require explicitly that, just asin the sphere

of objects where composites correspond to composites, so in the sphere of magnitudes

sums correspond to sums. In a more formalised setting | could have formulated this more
sharply, but | would avoid too much formalism.

6.4. Expositions and Compositions
Ratio must be viewed in a broader context than that of relations within and
between magnitudes. | want to sketch it by such disparate examples as:

641 aset of anima species with their average weights (or other quantita-
tive characteridtics),

6.4.2 as of flight connections with their prices (or distances),

6.4.3 asa of countries with their numbers of population (or their areas),
644  aset of articles with prices (or weights),

645 the s&t of components of an aloy with their masses,

64.6 the set of age dasses of a population with their numbers,

64.7 the set of categories of soil use of a nation, with the corresponding
aress,

648 the st of diseases with the number of cases of each one,
649 the sat of pars of points of a plane with their mutual distances.
The common feature in these examples is
asdt, ingenerd indicated by 2, ', . . . in the sequdl,
and

afunction, in general denoted by w, w', . . .in the sequel, which accepts
values of a certain magnitude.
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Between the first four (6.4.1-4) and the following four (6.4.5-8) there is
a profound difference:
In the first group the elements of £ are

objects in a primitive sense, while 2 is defined by common traits of its
elements (species of animals, flight connections, countries, articles),

in the second group the elements of  are

classesof a universe, formed according to certain criteriathat are important
for that universe (agesin a population, and so on).

In the first group
the function w describes internal properties of the elements of €2,
in the second group

the function w describes the sze of the dass (not necessarily a whole
number, cf. 6.4.5).

| will cal, quite arbitrarily, the first and second kind, respectively,
expositions,
compositions,

The ninth example, a not unimportant one, is wholly different from the
preceding ones in Section 6.5 we will return to it.

Expositions and compositions differ in how they are used. Usually they occur
in couples. Anticipating ageneral formulation, | will explain this by examples.

Couples of expositions:

£ a st of countries,
w the function that assgns to each country the number of its inhabitants,
w' the function that assignsto each country its areg;

the ratio w to w' (population density) is variable: a country has “in proportion”
the same (a larger, a smaller) number of inhabitants.

Q aset of filled plastic bagsin a supermarket, on which are indicated:
the price w,
the weight w';

the ratio w to w' (unit price) is variable, for bags containing the “same” article,
it will be the same; on these w and w' are linearly dependent.

Couples of compositions:

We consider two dloys with the “same” components. The components of the
aloys form two sets

Qand Q'
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with the corresponding mass functions
wand w',
for instance,

30 kg bronze consisting of 20 kg copper and 10 kg tin,
65 kg bronze conssting of 40 kg copper and 25 kg tin.

Both © and Q' are the et
{ copper, tin}.

In the two alloys we have, correspondingly
w(copper) = 20 kg, w(tin) = 10 kg,
w'(copper) = 40 kg, w'(tin) = 25 kg.

In general the ratio w to w' canvary; if wand w'are linearly dependent, it isthe
“same” dloy.

Two populations — The Netherlands and The Philippines — are partitioned
into age classes.

Qand Q'

are formed by the age classes
{[0,1), [1,10), [10,20),...}.
wand w'

are the number of people in the respective dasses.

In one population there are “in proportion” fewer babies, more aged people,
and o on, than in the other.

The case of a couple of expositions congsts of

one set ;
with two functions w, w’ on it;
whose — mostly external — ratiois considered.

The case of a couple of compositions congsts of

dass partitionings £ and Q' of two universes, attained according to the
same principle and identified in anatural way with each other;
with two functions w, w’ on it,

whose — mostly internal — ratiosare considered and perhaps compared.
6.5. Constructs

We pass to the example 6.4.9. It shows

a st £ based upon astrong — preferably geometrical — structure Zwith
a measure function.



188 CHAPTER 6

In our particular case X was a planar figure, for instance, the whole plane, 2
the set of pairs of points, w the distance.
Other possihilities would be:

Q the st of plane curves with w as the arc length;
€ the set of rectangleswith w as the area.

| will designate such asystem Q, w as
aconstruct,
or more precisely
a Z-construct

(if Z isthe structure on which it is based).
Constructs, too, are used in couples, 2, w and &', w', where it can happen
that Q=2 andw=w'".

A couple of constructs.

Q isthe set of pairs of points of a planar figure Z,
Q' isthe st of pairs of points of a planar figure Z',
w and w' are the corresponding distance functions.

Moreover, there is amapping
fof ZinZ'
which extends itself in a natural way as a mapping
fof QinQ'.
A property of f that may be relevant, is
similarity.
As with uniformity of motion in Section 6.3, smilarity can first be characterised
by the condition

f maps pairs, with the same mutual distance, on pairs with the same
mutual distance,

or
f conserves equality of distance,
or — a richer, but equivaent, formulation —
f maps pairwise congruent on pairwise congruent figures,
or

f preserves congruence.
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This formulation does not yet involve ratio, but under the — natural —
condition of continuity this characterisation is equivalent to
f preserves ratios, that is,
w(fe) : w(B) =w(@:wp) (o BER).
Thisis
preservation of internal ratios,

taken in £ and in ' respectively. As in Section 6.3, in the case of magnitudes,
fbeing a

similarity
can be expressed by the
constancy of external ratios:
w({fa) : w@ =w(p):w®B (a,BER).
Another example:

€ a st of line segments, w the length function,
'’ the set of squares on these line segments, w’ the area function.

The use of this couple is obvious.

6.6. The Occurrence of Ratios in Sections 6.3-5 Compared

In Section 6.3 ratios occur in and between magnitudes, in Section 6.4 in and
between expositions and compositions, in Section 6.5 in and between constructs.

The cases 6.3 and 6.5 resamble each other because of the underlying strong
mathematical structure, whereas in Section 64 these structures are weak.
Sections 6.3 and 6.5 dso have in common that

proportionality and similarity
can be defined

without involving ratio
purely by
preservation of equality or congruence.

In the case of Section 6.4 this is not possble or it would require complicated
reasoning.
Compared with Section 63 the case 6.5 has the advantage that

congruence of figures can be visudised more strongly than equality of
magnitude values.

These distinctions will be seen to have important didactical consegquences.
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6.7. Ratio in Smilarities

In our phenomenology the stress is now shifted to didactics.

Ratio as a concept and even as a mental object requires a considerably high
developmental level. For al that, the feel and thelook of ratios occur remarkably
early in development. According to Piaget, topologica concepts should precede
euclidean ones. We anticipate that this holds at most for such spatia relations
as inclusion, exclusion, and overlapping, but these are relations which no mathe-
matician would consider topologica as psychologists do. The acceptance of
truly topologica properties — that is, stating equivalence by means of one-to-one
continuous mappings — is certainly not an attitude that can be placed in early
childhood; it is much too sophisticated to be expected of little children. Piaget
and researchers who repeated his assertions or experiments were serioudy con-
fused. From the inability of little children to draw circles and squares o neatly
that they reasonably differed from each other, they drew the conclusion of
topological predominance. Yet a an early age children are able to digtinguish
clearly circles and squares, which is the only thing that matters. It is true that
children judge drawings in books or made by adults by other criteria than their
own production — akind of system separation which isworth studying closdly.

There can be no doubt, however, that children recognise early the different
szes of objects, and their being larger or smaler. It is equdly certain that they
can handle similarity as an operational equivalence. | would even go so far asto
assart that congruences and similarities are built-in features of that part of the
central nervous system that processes our optical perceptions. The immediate
reidentification of objects after a rotation (of the object or the perceiver) and
after a change of distance presupposes something in the brain like a computer
program for the dimination of this kind of mapping — it is riddleto me what such
a program looks like; its existence, which | do not doubt, islike amiracle to me.

At ayoung age a child recognises drawings and models of animals, furniture,
cars, hicycles, ships as images of these objects — it does not matter on which
scae, and whether they are pictured sde by side on different scaes. “How big
is a whale really?’, a child can ask, convinced that the picture, except for the
sde, is faithful. Well, sometimes whaes are sketched by drawings in one line,
but even the difference between a photograph and a characteristic sketch is

grasped early.

Weighings with a spring balance, performed by Bastiaan (5; 6), were indicated by him on
a horizontally typewritten “spring balance” with a different scae. He noticed inessentia
deviations in the figures (1 instead of 1) but neither the difference in orientation nor scale.
The typewritten image was structurally faithful.

After a sequence of sunny days Bastiaan (6; 1) sees clouds again, and says: “It will rain”.
| tell him: “No, these are very high clouds, where no rain fals out; rain clouds are low and
dark.” He: “What height are these clouds? | (exaggerating): “10 thousand metres.” He:
“And rain clouds?’ I: “Thousand metres.” He (showing to the ground): “So if we are here
and this (showing a height of about 30 cm) is rain clouds, then this (shows about 1 metre)
isno rain clouds.”
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Without any hesitation children accept that objects at the blackboard are
drawn ten times as large as on the work sheet, that the number line a the
blackboard has a unit of 1 dm compared with that of 1 cm on the work sheet.
They accept number lines where the same interval means a unit, or ten, or
hundred, sde by side. Children would, however, immediately protest structural
modifications that violate the smilarity of the imege

what is mutually equal in the original,
should be mutually equa in the image,

which aswe know, implies
the invariance of internal ratios,
characterising mappings as
smilarities.
Children become familiar at ayoung age with these
ratio preserving mappings

as we shdl cdl them, if they see planar or spatial figures pictured — paintings,
copies of paintings, models of buildings. Systematic deviations from this mapping
principle are noticed; for instance,

the use of different scales in different directions,
the use of different scales for different figures,
the use of different scales for parts of the same figure.

This, however, is not done by making the scaes explicit, but with formulations
like

the head is much too large — that is, if compared with the trunk,
this is much too long — that is, if compared to the width —

objections regarding the lack of smilarity though with no explicitation of ratios.
It requires more insight into geometrical relaions to adduce other criteria,
such as

what isaright angle in the original,
should be aright angle in the image.

With thisfeding or eyefor smilarity, as| have termedit, the child is of course
dill far away from smilarity as amental object, let done as a concept. | indicate
a number of intermediate stages:

Recognising ratio preservation or non-preservation of mappings,
Constructing ratio preserving mappings,

Resolving conflicts in the construction of ratio preserving mappings,
Operationdly handling,
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formulating,
relating to each other:
criteriafor ratio preservation, such as
preservation of equality of lengths,
preservation of congruence,
preservation of internal ratios,
constancy of external ratio,
preservation of angles,
and deciding about the necessity and sufficiency of such criteria.

In the first steps of this sequence
ratios do not occur explicitly,
later on
equality of ratios (internal and external) becomes explicit,
and finaly
ratios themselves are made explicit.

It is a sequence smilar to those observed with length and other magnitudes.
The strong visualisation is an advantage of the geometrical context of ratio
compared with other contexts. What matters didacticdly is the

gradual verbdisation of visua reasoning.

Most often the contexts of ratio are not visua but are accessible to visudisa
tion. Early familiarity with ratio-preserving mappings is a support to visudisng
such contexts of ratio as are not a priori visua. This, however, requiresthat the
visudised ratio is somewhat loosened from the context of global similarities. In
order to build a bridge from non-visual to visua ratios, the strict visualisation by
similarity must be weakened.

Similarity, as mathematically understood, is a mapping that extends over
whole planes. In each visudisation one is satisfied with linear or plane figures
that by their sze and structure suggest the whole plane: pieces of the red
world and their pictures, wallpaper patterns, and other structures that can be
continued inside and outside. For dl activities and their various levelswhich are
enumerated,

arich structure of origind and image

and the fact, or a least the suggestion that the one is the image of the
other,

areif not required, then at least advantageous.

Too little structure may be an obstacle to the visua recognition of similarity
of figures — this holds even for adults. In a wealthier structured material, the
more or less agorithmic criteria for the recognition of similarity can be isolated
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and exercised following the above course of activities, in order to become
operational in aless structured material.

It is a amdl step from the fact to the suggestion that something is somehow
the image of something else. The lack of any suggestion may be an impediment
to even think of similarities unless the dispensability and restoration of such a
suggestion has been prepared in alearning process.

If pictured rectangles are to be compared with regard to similarity, the
structuring addition of the diagonals alone can transform failure into success.
Path lengths on ground-plans and in reality are more easly compared than
circumferences of bare rectangles. The insight that all circles are similar can
more easily be acquired with structured circles, such as our various coins, which
on the obverse sde are even similar in surface details. The bare circle is not a
good medium to revedl the internal ratio of circumference (or distance covered
by rolling it) to diameter. The approach via the external ratios and circum-
ferences using different (and similarly structured) circles is more useful.

| resume this exposition with aligt of activities:

Transferring what has been
exercised, recognised, made explicit
with respect to ratios and ratio preservation
in arichly structured context
into aless or poorly structured context.
On behalf of ratios and ratio preservation
enriching a poorly structured context,
introducing a geometrical structure in anon-geometrical context,
translating a non-geometrical context into a geometrical one,
understanding and using contexts that might be geometrical or not as
geometrical images of each other.

6.8. Relatively

Whereas one can go a long way with ratio-preserving mappings without verbais-
ing al that can be seen, experienced, constructed as ratio, other contexts require
an early verbaisation (abeit not of ratio) of such ideas as

relatively (or comparatively).
As amental object this may be supposed at the end of the kindergarten age.

This chocolate is sweeter because it contains — relatively — more sugar.
A flea canjump — relatively — higher than a man.

An air travel to South America is — relatively — more expensive than one
in Europe.

In the Netherlands there are — relatively — more bikes than in Germany.
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In the explicit formulation the word “relatively” can be lacking, since it is clear
what is meant. The terms
relatively more, as much, less
can be given various shades of meaning
from roughly qualitative to precisely quantitative.

In particular, to establish “more” or “less’, estimations may suffice, though
they can be refined by additives like

much, very much, a bit.
“Relatively” lacks a relation term, which can be
obvious or explicitly added.
For instance:

If compared with the number of inhabitants there are more bikes in the
Netherlands than there are in Germany.

A possible sequence of levels:
understanding that orders (larger and smaller, more and less) can be
relativised (relatively larger, smaller, more, less)

understanding “relatively” in the sense of “in relation to ... ”, with the
criterion of comparison filled in at the dots,

using meaningfully “relatively” and “in relation to”,

completing “relatively” to “in relation to ...” in a context,
knowing operationally what “relatively” and “in relation to” mean in
generd,

explaining what “relatively” and “in relation to” mean in general.
There is anumber of stages

from roughly quditative to precisely quantitative,
where finaly according to the subject the criterion is

internal or external ratio.

Tasks where such activities can take place can have avisua character:

houses, people, trees on different scaes
— which ones belong together, and why?

agroup of persons, and on another scale, clothes
— what belongs together?
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walls on different scaes and of different thickness
—which ones are thicker?

meadows with flowers, ponds with frogs, skies with clouds
— where are there relatively more?

Other senses can play apart:

alarge orchestrathat produces relatively soft sounds.

6.9-11. Norming

6.9. A few examples will be given to introduce the complex of techniques,
wrong use of techniques, attitudes fostered (or rather, not fostered) by these
techniques — a complex | designate by norming:

If we imagine the earth as a pin's head (1 mm diameter), the sun appears
as a sphere with the diameter 10 cm at a distance of 10 m.

The scde reduction is meant to visuaise drastic ratios; one chooses a familiar
unit to start with; it does not matter what the scde is.

If the development of life on earth is thought to have happened in a day,
man appeared one minute ago and human culture started a second ago.

It looks much like the first example: atime reduction which can be illustrated
by alinear drawing. For the largest component “day” has been chosen as aunit,
whereas in the first example it started with the pin’s head.

The examples

one out of five children born, is a Chinesg,
one out of four carsis a Fiat,

show a preference for ratios normed by “one out of ...".
A recipe “boeuf a trois moutardes” for four persons,

the mea unit is four, which in many cases will save conversions. (It is, however,
not recommended that one trust ratio in cooking and baking.)
The quality of drinking or swimming water is indicated by

thismuch st in one litre
or
that many coli bacteriain one cc,

where the quantities that are actualy drunk or bathed in are of quite another
size, and the quantities actually analysed are again of a different size.
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The production of refuse is measured by a vague unit such as
inhabitant’s equivalent,

which only serves to estimate and to tax the refuse production of families and
industries.
The power of nuclear explosions is measured in

kilotonsof TNT,

a strange norming that serves to compare nuclear bombs with each other rather
than with conventional explosives.

If the cost of living is put a 100 in 1965, it is 147 in 1975 —an example of
the much used index figures, where by preference a basis 100 is chosen. In other
cases an average is normed at 100, for instance, for the 1.Q.:

the average score in a certain population (a a certain age) is put a 100
in order to measure individual scoreswith it.

This number 100 links up with the decima system, while on the other hand,
decima fractions are avoided as much as possible. In traditional instruction in
arithmetic, percentages and interest were closdy connected. This, however,
is not an old tradition; interest was expressed rather by “one to ...” (the
“tithe” means one tenth). By the decimalisation of money, percentage interest
arithmetic became effective. Today the most usual application of percentagesis
in “compositions”:

the wholeis put at 100 in order to express the parts numerically.
Theamis

to make different compositions comparable.
The comparison can be

supported by visualisation,

for instance, by sector diagrams. The need to make composition data comparable
is a present the strongest motivation for percentages;, moreover, percentage is
adevice that presentsitself most naturally as soon as, on behalf of comparability,
totals must be normed uniformally. Thus not

if the Netherlands were as large as the FRG
nor

if the FRG were as large as the Netherlands
but

put the area (number of inhabitants) of both of them at 100 (or perhaps
1000), then ...
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Resuming the preceding analysis, one can state afew levels

with respect to making compositions and constructs more perspicuous by
norming one component,

with respect to making compositions comparable by norming the whole
(in genera on 100), while the absolute data and the scae factor play such
asubordinate part that they are more or less disregarded:

understanding the norming,

understanding the rationale of the norming,
performing normings where they are required,
performing normings where they are useful,
understanding this activity operationdly,
describing it,

and putting it into alarger frame.

6.10. A migtake related to norming is forgetting about the unnormed data and
the scde factor:

absolute meaning is ascribed to data that depend on norming, in particular,
data derived by different normings are compared without renorming;

the number 100 plays an, as it were, magic part;

percentages derived from different norming procedures are added and
processed to — unweighted — averages,

it causes surprise and is not understood if, for instance, a party in an
election sees its percentages increase in dl districts while the percentage
over the whole decreases,

double norming is gpplied as in the example taken from a newspaper:
in 1972 the nationa product per capita of Bresl increased 5%, but this
increase is in the greater part absorbed by the 4246 increase of the popula
tion in the same time.

6.11. A more subtle and more dangerous feature is forgetting about the un-
normed data, for instance, in satistics, if thisincludes forgetting about

the precision of the normed data:

“one out of two”, or 50% can have been obtained from atotal of two, or by
arough estimation from atotal of a thousand or a million.

Problems of precison can be caused by measurements or by stochastics —
as a matter of fact, the source of imprecision in measurements, whether exact
or estimated, is dso stochastic. Precision will be dedt with in another chapter,
but meanwhile it makes sense to have touched upon this subject already in
connection with norming relative data. Even in the present chapter we will
touch on it once more.
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6.12. It can happen that normings take place or are asked for where they do
not matter or are even disturbing. Examples:

A string closing around the equator is lengthened one metre and again closed,
loosdly, around the equator. Can a man creep through under it?

The problem is often answered with a question regarding the diameter of the
earth, which, in view of the linear relation between diameter and circumference
of acircle, does not matter.

John and Pete live and work at the same address. By bike it takes John 30
minutes and Pete 40 minutes to go from home to work. John leaves 5 minutes
after Pete. Where does he catch up?

The usud reaction is to ask for the distance between home and work, which
again for reasons of linearity does not matter.

An even more drastic example: a student who must switch from the metric
to the Anglo Saxon system of measures asks. how much is # here?

The preceding can be summarised as follows:

Ingght into the irrelevance of normings in the case of linear relations.

6.13. Visualisations

Understanding ratios can be steered and deepened by visudisations. One can
illustrate

expositions by histograms and pictorial statigtics,
compositions by sector diagrams and other planar divisons.

Example of visualised expositions:. The EEC countries are represented, with
respect to their aress, by

rectangles with the same base and heights proportional to the areas
which are placed sde by side as in a histogram; the numbers of population by

agroup of human figures (for instance, each representing a million),
where both representations can be combined by

placing the human figures into the corresponding rectangles,

in order to visudise the different densities of population (ratio of number of
inhabitants to area).

Example of visualised compositions: A circle divided into sectors corresponding
to, and with respect to, area

proportional to the use categories of the sail of a country,
for various countries side by side, in order to illustrate

the differences with regard to the use of soil
(more or less agricultural, and o on).
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Such visualisations are a kind of ratio-preserving mappings, with ratios other

than those between distances of pairs of points considered — in the last example,
on the one hand,

the ratios of areas, population numbers, use categories,

on the other hand,

areas of planar figures.

A sequence of levels could be:

understanding histograms, pictorial statistics, division of areas and similar
visual representations as ratio-preserving mappings of expositions and
compositions,

constructing such visua representations,

deciding conflicts in constructing them,

understanding the principles of such visud representations, and describing
them,

recognising preservation of ratio as the common principle in the visua
representation; and

describing it.

Furthermore, as regards comparing two or more expositions and compositions

represented in thisway:

deciding questions on “relatively more, as much, less’ by means of those
visua representations,

making such decisons possible by means of manipulating the material;
understanding the principles of such decisions; and

describing them.

6.14. Visualisations by Means of Constructs

Constructs can serve to visudise not only ratios and proportions, but aso entire
linear connections. One can distinguish graphic and monographic methods:

the graph of the linear function (Figure 55),
the sun shadow (Figure 56),
the lamp shadow (Figure 57).

Fig. 55. Fig. 56. Fig. 57.
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Though used too little, these visualisations are particularly effective didactically.
They are models that fit quitewell the ideas on the geometrisation of elementary
instruction. They have a good chance of being serioudly exploited.

Internal and external ratios
and their mutual relations

can be efficiently
seen, understood, described

by these models.
When reading Section 6.15 one should remember this fact.

6.15. Algorithmisations

The counterpart of visudising is processng numerically. Verifying preservation
of ratio of amapping f issimplified by the remark that the validity of

w(d) 1 w(B)=w'(f(4)) : w'(f(B))
need not be verified for dl dl pairs 4, B € Q. Indeed the
validity for A,BandB, C
implies the
vdidity for A, C,
the transitivity of ratio preservation.

(In the caxe of constructs more simplification can be used which rests on
geometrica facts; in the plane it suffices to check ratio preservation for the
distances from two fixed points, the remainder is guaranteed by congruence
theorems.)

It is less trivid to grasp that preservation of ratio can be described by the

existence of a constant scde factor, that is, by an external ratio.
Anocther important indght isthat the

composition of ratio preserving mappings again yields ratio-preserving
mappings
and to know

how scde factors (external ratios) behave under composition of ratio-
preserving mappings.

In the case of magnitudes it isimportant to notice that the preservation of raio
is essentially recognisable as

an isomorphism with respect to the addition of magnitudes.
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| am going to formulate a few levels.
Simplifying the verification of ratio preservation by means of
transitivity of ratio preservation,
geometrical congruence properties,
external ratio and scde factor,
isomorphism with respect to addition within magnitudes,
behaviour under composition of mappings;
simplifying the construction of ratio-preserving mappings by the same
principles,
deciding conflicts in applying these principles;
understanding these principles operationally, and describing them;
understanding relations between these principles operationally and describ-
ing them.
In the course of dgorithmisation thisis complemented by
understanding ratios operationally in the context of the arithmetic of
fractions; and
describing this relation;
understanding properties of ratio operationally as properties of fractions;
and
describing this relation;
understanding ratio preservation of mappings of magnitudes operationally
aslinearity; and
describing it as such;
understanding their properties operationaly as properties of linear map-
pings, and
describing them as such.

The converse, which properly beongs in the chapter on fractions, may
explicitly be added:

understanding fractions operationaly in the context of ratio; and describ-
ing thisrelation;
understanding properties of fractions operationaly as properties of ratio,
and
describing this relation.
understanding linear mappings in the number domain operationdly as
ratio preserving mappings, and
describing them as such;
understanding their properties operationaly as properties of ratio pre-
serving mappings, and
describing them as such.
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Ratio-preserving mappings not only serve in visuaisations, but dso have their
own cognitive function as models, as shown by our first example, the uniform
motion as a ratio-preserving mapping of the magnitude time on the magnitude
length.

The ratio-preserving mappings themselves are illustrated

graphically (the straight line as an image of the linear function),
nomographically,
by means of the dide rule,

and agorithmised by

proportionality tables (proportionality matrices),
formulae for linear functions.

Levels to be mentioned might be

reading;
constructing;
understanding operationaly the principles of the devices; and
describing them;
isolated and in their mutual connection.

6.16. Criteriafor Ratio Preservation

The principles by which one
recognises and predicts

that a mapping preserves ratio are more profoundly rooted and less accessible.
They can hardly be cleared up without a prior didactic phenomenology of
particular magnitudes. The following discussion tries no more than to sketch
how this can take place.

| gtart with an exemplary list of adjectives, whose meaning will soon become
clear:

many, big, long, wide, high, thick, much, full, long-lasting, heavy, fast;
strong, old, sharp, blunt, soft, dense;

bright, warm, red, loud, wet, high;

sweet, beautiful, painful;

clever, interesting, deepy, difficult;

va uable, expensive, rich.

Some of these words have several meanings (such as “bright”). The adjective

“high” appears twice in this list, in the first place it may mean a property of

mountains, in the second a property of sounds, but this does not matter here.
One can ask the questions:

Which properties admit comparatives?
Which properties admit doubling?
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(“Doubling” stands here as a paradigm; more general would be “multiplying”,
maybe dso halving, dividing, findly aso adding.)

How to check comparatives?
How to check doubling?
How to make comparatives?
How to make doubles?

These are questions on factudlities, though with a considerable logicd or linguist-
icaly analytical touch.

The central question is that of doubling. The process of doubling is that
of combining two equals. This is how to transform a tower into one of twice
the height, namely by putting an “equal” tower on its top. A weight of sugar
is doubled by adding an equa one. Temperature shows that it is not aways
that easy; the temperature of a liquid is not doubled by adding aliquid of the
same temperature; likewise the speed of a rolling ball is not doubled by uniting
it with one of the same speed.

Parameters that, when things are combined, behave additively are caled

extensive

—number, length, area, volume, weight, energy, brightness (of a light source),
electricd charge, dl havethis property; othersliketemperature, colour, sweetness
are caled

intensive,

Yet even parameters like temperature, or rather temperature difference, can
be interpreted as extensive parameters, though of a process rather than of a
state. So what are combined are not the states but the processes. As to tempera-
ture, for instance, a difference of temperature which is obtained by means of
heating with a source of heat W during atimet, is doubled if the “same” process
is repeated (actually this holds only within certain limits). In the cae of —
vectoria — velocities this combining with the am of doubling looks different
again: if A with respect to B and B with respect to C have the same velocity,
A has double the velocity with respect to C.

The principle by which the ratio preservation of mappings can be recognised
and predicted can now be formulated as follows:

Two parameters which are extensive under the same operation of combin-
ingarein aratio-preservingrelation.

| do not clam that this digging has brought profound wisdom to the surface.
The reault is, in a wealthy wording, the criterion to which each able teacher will
appeal, more or less conscioudy, if he wants to convince his pupils about where
they may use the “rule of three” and where not. “He who works double the
time gets double the money” he says for instance, and perhaps he puts twice the
amount of money under two equa intervals of the time axis. Or “double the
distance, in double the time”  with a smilar illustration.
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It is clear why one cannot draw any inference from the number of wives
of Henry VIII to that of Henry IV, snce the rank number of kings of equal
name can never be explained as an extensive parameter by any combination.
The rule of three does not apply to the problem “if a man covers adistancein
3 hours and his son does 0 in 2 hours, how long do they need if they walk
together?’ because going together, for instance by people who are equaly
fast, does not change a dl the time required. Yet d0 in the problem of the
working men who do certain work first individually and then together, the
central question is. does the required time double if two equals work together?
No it haves, 0 the reciproca time emerges as an extensve parameter. And
9 it emerges in the case of the man and his son, provided they do not walk
together but to meet.

I note down the following levels.

deciding on the ratio-preserving property of mappings in factual contexts
and problem situations;

recagting context and problems in such away that ratio-preserving prop-
erties gain prominence;

deciding conflicts under these circumstances;

understanding principles of such decisions and constructions operationally;
and

describing them.

Auxiliary activities may be required on the following levels:
In order to become oriented to ratio preservation

considering pairs of parameters that are extensive under the same com-
bination; and
looking for such parameters;
grasping the importance of such parametersfor ratio preservetion; and
explaningit.
In these auxiliary activities the following levels can be distinguished:
deciding with respect to parameters of states and processes whether they
are extensive according to a certain way of combining,
finding extensive parameters for given ways of combining,
finding ways of combining that make given parameters extensive;
finding parameters and ways of combining that fit with each other;

understanding what extensive parameters are operationally; and
describing them.
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6.17. Non-linearity

A great variety of phenomena suggests that proportionality, ratio preservation,
linearity are universd models; the faith in these models is reinforced by ther
frequent use. Approximately a least the linear relation looks appropriate in
many cases as a phenomenal tool of description. We indicate cases where this
primitive phenomenology fails for theoretical reasons:

the non-linear behaviour of areas and volumes under linear multiplication;

the non-linear variability of precision in measurements and stochagtic data
under multiplication of the sample size.

A historically remarkable example:

the bet on at leest one s in 4 throwswith adie was considered equivalent
to that on at least one double-six in 24 throwswith two dice.

Another historical example:
the idea to solve the “probleme des partis'* by alinear procedure.
Faith, acquired by long practice, in linearity (or the rule of three), where
fresh principles were at stake!
6.18. The Use of Ratios and Proportions
The genera useisto predict afourth term when three in
a:b=c:d

are given.
The ratios on both Sdes can be meant as

internal,
and related to

equal or different magnitudes,
for instance

two strips a, b and two money values ¢, d,
or

two pathsonamap a, b and two lengthsc, d.

* Mathematics as an Educational Task, p. 584.
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Or they can be meant as
external,
for instance,
two strips a, ¢ and two money values b, d,
or
two paths on amap a, ¢ and two lengths b, d.
It can dso happen that one of the ratio is
explicitly given as such,
which actually means two data only, for instance in the case of the external ratio
path to time, weight to volume
explicitly as
velocity, density.

Earlier in Section 4.19 we analysed a strategy of comparing approximately
cardinas of what we then designated as

k-homogeneous sets.

In our present terminology the relation between the cardina #and the character
k of a set would be termed (approximately) ratio preserving. As announced
there, it can be used to estimate cardinals and ratios of cardinals.

A practical use of proportions in general includes

changing the middle terms in order to profit from the relaion between
internal and external ratio,

processing the data, independently of the place of the known,

exploiting the definitory properties of internal and externa ratio, using
visudisng models,

composing and splitting up proportions,

estimating parameters by means of approximately linear dependent ones.

6.19. “Ratio’ in Learning Processes

The present section has been suggested by experiences in teacher training in-
stitutions, though they are rooted in principles which will be illustrated later
on by more examples.

In Section 6.7 | stressed that in visual contexts children — even at the kinder-
garten age — can grasp the relative view and ratios (Figures 58 and 59).
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Fig. 58.

In the IOWO theme “The giant's greetings’ children estimate the giant's
Sze (and many other related szes) by the trace of the giant's hand on the
blackboard. This direct approach is possible because no numerical data are
introduced by the text. The theme “Camping ground”, however, is much less
directly accessible because it introduces explicitly numerical data, and it ad-
dresses itself to children who have learned to identify measuring with the use of
theruler.

A smilar casel

Monica (5; 8) builds towers with congruent blocks. She is quite good a comparing towers
of different height, even if they are placed on different bases. She has put 11 blocks on top
of each other. | ask her to show me the height of a tower of 20. She shows a height 2—3
blocks higher. | let her continue building. At 13 | repeat the question; her answer is some-
what better. | ak her how many should be added. Her lips are moving. Obvioudy she is
counting from 14 to 20 and every time is disgppointed again because she does not know

how many she should add. | teach her to raise the fingers while counting.

This story istold to unmask my incompetent didactical behaviour: the premature
and unnecessary trandation of a ratio into a numerical problem. This is quite
characterigtic of the traditional dominance of arithmetic over mathematics
instruction.

To teachers in training whom | observed, “ratio” is either a vague relation
which has not been made conscious, or an entirely algorithmised or automatised
phenomenon — in the most favourable case expressed by proportion matrices.
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Why dmt ym .:l.{z'mé
the tower 7 7t ts
only ¢ meters !

. : 1]
No! It ¢5 certamly 30 FTTT

mebers,  am myjselfr” TOCIL
2 meters £all/

Fig. 59.
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The mental objects “relatively” and “ratio” have been blocked by numerical
asociations. The student teachers have great difficulty in creating models by
which they can open to their pupils the entrance to the mental objects. they do
not even grasp the relevance of such modes. Obvioudly this is a consequence
of their own process of learning ratio which has been directed straight on to
agorithms.

By this | do not mean that these students have never gone through a period of
ingght with respect to “relatively” and “ratio”. There is no need to suppose
—and it is even not probable — that they have experienced these notions from
the outset in an algorithmic way (in order to automatise them later on). It is
more probable — and this is typica of many learning processes, especidly in
mathematics — that the origind sources of indght have been clogged, and the
way back to insight is blocked by the processes of dgorithmising and automatis-
ing. Autonomy of agorithm and automatism is a strong inclination, which is
understandable; too much insight can be ahindrance under certain circumstances.
Anyway, we have to view criticaly the bad consequences of such blockages.
What can we do againg them?

| will answer this question at several opportunities. It is most often necessary
but not sufficient that algorithms and automatisms are acquired by insight.
The learning process must be steered in such a way that sources of indght are
not clogged during the process of algorithmisation and automatisation. This
can be achieved, in my view, by returning again and again during the process of
agorithmisation and automatisation, and even afterwards where it fits, to the
sources of indight. This process ams a an ever greater consciousness of what
initially was subconscious, and an ever sharper verbalisation of what initialy
was not verbdised a dl. With regard to “rdativey” and “ratio”, this means
that the visud modds are repeatedly recdled and abstracted into thought
models. What is wrong in many methods is a satisfaction with the uniqueness
of cetain decisve gteps in the learning process and with repeated exercises
of the consequences of such steps, instead of repedating the steps themselves.
A corrective measure; repeating the step if something goes wrong with the
automatism. But more important is prevention: repeating the step from insight
to automatism before things go wrong, in order to guarantee the ahility to
repeat the step.
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STRUCTURES: IN PARTICULAR,
GEOMETRICAL STRUCTURES

7.1. Chapter 7 was originaly “Geometry”, which later was changed to “Geo-
metrical Contexts’. | stepped straightly into a phenomenology, which was abit
didecticdly tainted. But | soon had to exchange the phenomenologicad thread
for a methodological one. In order to make things clear | had to take so many
sSde seps that the frame of the chapter was in danger of bursting. | started
again. What follows now is smply mathematics or, as far as it might be valued
as phenomenology, it is one with its object & a very high level, the phenom-
enology of a quite advanced mathematics. | am afraid this will not be my last
struggle with the revision of the whole idea.

7.2. Without much ado | used the word “structure” many times. | will explain
it now more systematically.

Fig. 60.

Look a Figure 60. It represents a structure, a graph condgting of seven nodes
and seven connecting lines. The figure resembles the “Big Dipper”, which
was indeed the intention of the drawing. (The congellation, though more
extended, is properly named Ursa Maior, but this does not matter.) | could
have drawn the “samée’ graph differently (Figures 61 and 62), but then you
would not have seen any congdlation in it. The three figures — consdered as
graphs — are isomorphic or, in other words, combinatorically equivalent.

Fig. 61. Fig. 62.

A graph is a sgt of “nodes’ and “edges’ with a relation “each edgejoins two
nodes’. Visualy the nodes and edges are rendered by points and — preferably
straight — connections. Isomorphism for graphs means that the one can be

210



211 STRUCTURES

mapped one-to-one on the other such that nodes, edges, and joinings correspond
to each other. A variant is the directed graph, where each edge is directed from
one of its nodes to the other. Then isomorphism includes preservation of direc-

tion under the mapping.
Graphs as combinatoric frames are a frequent phenomenon:

A city plan with the corners of the streets as nodes and pieces of streets

asedges.
The network of the Netherlands Railways with the stations as nodes and
the direct junctions as edges.

A box of blocks or ajigsaw puzzle with the particular blocks or pieces
as nodes and neighborhood as edge.

A cube with its corners or faces as nodes and its edges as edges.

7.3. Combinatoric structures are relaively poor. In general, physica or mathe-
matical systems possess more structure. Take a trelliswork or wire-netting of
squares or hexagons (Figures 63 and 64).

& @

Fig. 63. Fig. 64.

They can be structured purely combinatorically, and then they are equivalent
to the graphs of Figures 65 and 66.

S

Fig. 65. Fig. 66.

However, Figures 63 and 64 suggest more structure than Figures 65 and 66.
Firg of dl, that of arigid body: Figures 63 and 67 are congruent, as are Figures
64 and 68, that is, they can be mapped on each other such that all mutual
distances arepreserved.
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Fig. 67. Fig. 68.

Figure 69 is similar to Figure 63, as is Figure 70 to 64; that is, they can be
mapped on each other while dl ratios of distances are preserved.

Fig. 69. Fig. 70.

This kind of structure could have been observed with the network of the
Netherlands Railways; for instance, one could note at everyjunction the distance
in km or minutes or even provide each junction with a length proportional to
the distance.

So the structure can include

distance of pairs of nodes,
ratio of distance of pairs of nodes.

Correspondingly, isomorphism means

congruence,
similarity.
If we consider Figure 63 as a graph we can include in the structure the
relation of distance with respect to

all pairs of nodes,
joined pairs of nodes (edge lengths).

The second structure is weaker. In this sense the structures of Figures 63 and 71
are isomoprhic. They are equivalent under transformations we designated as
flexions.
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Fig. 71.

Vertical fences like Figures 63 and 64 are mapped by the sun into shadow
images like Figures 72 and 73. The shadow mapping conserves rectilinearity
and parallelism. Such a mapping is caled an affine mapping.

2

Fig. 72. Fig. 73.

In generdl, structuresare weakened if, rather than distance or ratio of distance,
they include only

rectilinearity and parallelism.
Isomorphism then means
affinity.

If the fences of Figures 60 and 61 are projected as dides on a screen, we can
get figures like Figures 69 and 70, at least if the dide and the screen are paraldl.
If they are inclined to each other, we get figures like Figures 74 and 75. This
kind of mapping preserves rectilinearity.

N

Fig. 74. Fig. 75.
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Structures like the preceding ones can be weakened s0 as to include only
rectilinearity
as a structuring relation. 1somorphism of structure then means
projectivity.

If the projection screen is not flat but bumpy, then the image of Figures
63 and 64 can look like Figures 76 and 77. What is preserved in this kind of

Fig. 76. Fig. 77.

mapping? Only the connection of figures: a continuous curve passes into a
continuous curve; there are no cuts and no folds. What is preserved in such

mappingsis

neighborhood — the topological character.
Isomorphism here means

topological equivalence.

Topological and combinatoric equivalence look in some aspects smilar. A
graph where two nodes are joined by a most one edge can dso be defined asa
st of nodes with a relation of

being a neighbor.

It is a coarser kind of neighborhood than in the topologica case. Figures 60-62
are not only combinatoricaly but — as polygons — dso topological eguivalent.
But topologicaly they are dso equivalent to Figures 78 and 79, a closed curve
with atail.

REIEE

Fig. 78. Fig. 79.
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More examples of topologica structures and their isomorphisms:

The surfaces of a sphere and a potato are topologicaly the same, but they
differ from the surface of a ring, which as far as its topology is concerned can
dso be represented by a rectangle (Figure 80) where the opposte sides are
imagined to be stuck together according to the arrow.

Fig. 80.

A cylinder is topologically equivalent to an annular domain bounded by two
crcles (Figures 81 and 82), where boundaries correspond to boundaries; the
annular domain without its boundaries is topologically equivaent to the cylinder
without its boundaries, as well as to a cylinder of infinite length, and finally
also to aplane in which one point has been pricked out.

Fig. 81. Fig. 82.

7.4. The examples of structures | gave were geometric or illustrated geometri-
cdly. | stressed this kind for didactical reasons but it would be a shortcoming
if | were to leave it a that. As a matter of fact | aready dedt with various
structures in the number system: the order structure, the additive structure, the
multiplicative structure. | can dso put these kinds of structures on other sets,
for instance, a multiplicative structure on a st of four lements e, a, b, ¢ by the
multiplication table

e a b c

a e c b

b c e a

c b a e

which is to be read in the usua way. Thisthen is the so-cdled “group of four”.
It is, however, unusua to define structures as explicitly as has been done
here (and in Section 7.3). Most often it is done implicitly; that is, one introduces

a st
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with
certain relations on it,
and requires these relations to observe
certain postulates.
For instance, a group is by definition a
set G
with
relationsab = ¢

and

aspostul ates,
associativity : (@b)c=a(bc)
an identity elemente: esa=ae=a
for each element aninversea™ :aa™! =g 'a=e.

This does not define just one group but rather the group concept, which can
be examplified by many (finite or infinite) models, and for each pair of groups
one can ask whether they are isomorphic, that is, show the “same’ structure.

This implicit approach is more fruitful than its explicit counterpart. In order
to add one more geometric example, | take

metric space,
a

st R of “points’
with a

distance relation for pairs of points,
that is a function p, such that
p{a, b)isared number 2 0,
subject to the requirements that

p(a, b)=0<—>a=b,

p(a, b) = p(b, a),

p(a, b) + p(b,¢) 2 p(a, ¢).
Metric spaces can again be compared with each other; isomorphic ones are do
cdled

isometric.
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A weaker structure is

topological space,
a

st R of “points’
with a

relation of being dose to each other,

subject to requirements which | do not specify. The most usual topologica
gpaces are in fact better handled if approached from metric spaces by weakening
their structure. Then being close to each other can be defined technicdly viathe
metric:

V is cdled a neighborhood of p in R if there is an e >0 such that dl
points a a disance < e fromp are lyingin V.

This transforms the quantitative distance into aqualitative closeness.

7.5. Mappings are important not only between different structures. The com-
binatorid structure of Figure 60 admits a mapping onto itself which interchanges
« and vy while dl other nodes remain in their places. Thisis an

automor phism,

of course, in the combinatorial sense; that is, if | am satisfied with the com-
binatoric structure of the graph. If | consider Figure 60 as a picture of the Big
Dipper with the correct distance ratio on the firmament, | am not alowed to
interchange o and .

The one-to-one mappings of a system onto itself that preserve structure,
are cdled automorphisms. They form a group.

The n-gon, combinatoricaly viewed, admits 2n automorphisms; that is, if |
number the vertices subsequently by

0,1,...,n—=1 modn,
| get the n automorphisms
x—>i+x,
and the n automorphisms
xX>i—Xx.

Together they form the so-cdled dihedra group.

An n-gon with more structure will in general admit no automorphism except
the identity. Suppose the sides posess lengths which are considered part of the
structure. Only if dl theselengths are equal are the combinatorial automorphisms
—flexions—dso automorphisms in the sense of the richer structure. If the
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lengths of the sides and dso the angles between the sides are both understood
to belong to the structure, the above automorphisms exigts as such only if dl
anglesare equal.

The graph consisting of the vertices and edges of a tetrahedron admits al 4!
permutations of the vertices as automorphisms; if the lengths of the edges are
comprised in the structure, the group of automorphisms may shrink. The graph
of vertices and edges of a cube has a group of automorphisms that is twice as
large, under smilar conditions as for the tetrahedron.

The euclidean plane and space are particular rich structures with the relations
of

collinearity of three points,

coplanarity of four points,

order on the line, in the plane, in space,
congruence of line segments,
congruence of angles, and s on.

Distance does not belong a priori to the structure of euclidean plane and space,
though it is a fact that assigning a length, say 1, to one single line segment
bestows unequivocally lengths on dl line segments. That is what is caled gauging.
Thus

gauging transforms the euclidean space (plane) into a metric — euclidean
— space.

A posteriori it appears that

the euclidean structure is determined by this metric structure.
For instance, the order relation

g betweenp and r

can be brought back to the metric relation

e, q) +p(q,r)=p(p, 1),

and collinearity of three points can in turn be brought back to betweenness.
The mappings of the (metric) euclidean plane or space on itsdlf that preserve
distance — the isometries or congruences — aso preserve collinearity, coplanarity,
order; they map lines on lines, planes on planes. So they are automorphisms of
these structures.
The automorphisms of the metric euclidean plane are the

trandations, rotations, dide reflections;
those of metric euclidean space are the
trandations, rotations, screwings, dide reflections.
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If, however, the metric is dropped and only the euclidean structure is left,
the group of automorphisms increases; it becomes that of the similarities.

A weaker structure of plane or space than the euclidean is the affine structure,
whole defining relations are

collinearity and parallelism.

The automorphisms of this structure are the affinities — a larger group than that
of the smilarities.

If one starts, as we did, from euclidean space, then to get the affine structure,
one need not require preservation of paralelism separately. Indeed, mappings
of euclidean space that preserve collinearity map straight lines onto straight
lines, planes onto planes; paralel lines are by definition lines in one plane that
do not meet — a property that is consequently preserved under such mappings.

In restricted parts of the plane or space, however, preservation of collinearity
does not imply that of parallelism; there non-affine mappings exist that preserve
collinearity, though they cannot be extended to the total plane or space unless
the plane or space itself is extended, that is, by adding so-caled points at infinity
(lying on aline or plane at infinity). This produces the projective plane or space,
astructure with the relation of

rectilinearity,
and as isomorphisms the

projectivities.

One more step is maintaining in one of these structures — euclidean plane or

space, projective plane or space — only a

relation of closeness;
then a

topologicd structure
arises. euclidean plane or space, projective plane or space considered as

topological spaces,
with as automorphisms their

topologica mappings onto themselves,
which form very large groups.
7.6. Thegroup of automorphisms of any structure includes the identical mapping
of the structure onto itself. It can happen that this exhausts the group. The
examples of Section 7.5 showed large groups of automorphisms. For studying

a sructure its group of automorphisms may mean a great deal. Congruence
theorems is an example: the fact that triangles are congruent can be the source
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of many aspects and properties they have in common. The midpoint of a line
segment is an affine, yet not a projective, concept, which implies that with
only the ruler one cannot halve aline segment, though it might become possible
as soon as one has at one's disposd an instrument that produces parallelism.

The importance of group theory for geometry was chosen by Felix Klein as
the theme of his Erlanger program. Felix Klein grasped and stressed that the
geometries dominating his work together with their mutual relations were to
a high degree determined by their groups of automorphisms and the mutual
relations of these groups. Starting, for instance, from projective space and its
group, one could pass to affine space and to the affine group as a subgroup of
the projective group by fixing one plane —to be considered as the infinite plane.
Further, by fixing in this plane a non-degenerate imaginary conic, one could
pass from affine space to the heavier structured euclidean space, or by fixing
area or imaginary quadric, to non-euclidean spaces, and to their automorphism
groups as subgroups of the projective group.

So the group of automorphisms of a geometry came to the fore—a dogan:
geometry is the invariance theory of a group. It is a fruitful idea, which has
been fully elaborated with new perspectives in E. Cartan's “homogeneous
spaces’. It is a sound principle, which applies to structures with such a degree
of homogeneity that they can be defined by the expression of this homogeneity,
that is by their groups of automorphisms.

But notwithstanding its importance, this is only one aspect of the study of
structures, in particular, geometric ones. In our expostion on structures this
aspect has been brought to the reader’ snotice as late as Section 7.5. In Sections
7.2-4 we were busy with various kinds of structures; we asked whether systems
of the same kind of structure were isomorphic. Such knowledge too canbe of
great importance: discovering that two structures obtained in different ways
are isomorphic, or managing by means of restructuring to make them isomorphic,
may create opportunities to transplant concepts, properties, extra structures
from the one to the other. In fact this use of

isomorphisms between structures
is much more comprehensive and in general more fruitful than that of
automor phisms within a structure,

whichistiedtoquitespecial, and particularly homogeneous, structures.

The automorphisms of a structure form a group. Finding out whether, and
stating or ensuring that, certain structures are isomorphic has nothing to do
with group theory. Nevertheless, these two things have often been confused.
It is quite a serious confusion; it concerns more than the terminology of what
to cdl a group and what not.

The germ of this confusion is dready visble in Klen's Erlanger program.
(The name under which that inaugural lecture has become known and is cited
is dso rather responsible for the confusion: it has been interpreted to mean
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the program for geometry, whereas it was an annex to the program of Klein's
courses at Erlangen University.) Yet thoughtless copying is a danger that even
mathematics has to face, unless it is hard mathematics, supported by formulae
and logical reasoning. It is a sad story, but so far this misconception has not
been extirpated. Even in mathematics research it shows up as soon as the Erlanger
program is around. So we should not be surprised to meet it in the philosophical,
psychological, and mathematical-didactical literature. A large part of Piaget's
work, not only that regarding geometry, is dominated by this misconception,
a least asfar asit is concerned with mathematically tainted theory.

7.7. 1 will explain this more precisely.

The marvellous spaces with their beautiful automorphisms that we dealt with
in 7.5 are not aims in themselves, and — to add immediately a psychological and
didactica argument — neither are they dtarting situations. The spaces are to
lodge figures, which can be both starting point and am in itself, but if anything
within these figures is worth being explored and is a challenge to exploration it
has little to do with the automorphisms of the surrounding space.

If two triangles (or tetrahedra) have correspondingly equaly long sides
(or edges) they are congruent, which implies that this correspondence can
be extended to a length-preserving mapping of the space. For quadrilaterals
in the euclidean plane or space the anadogue does not hold: the isomorphism
of flexion isomorphic quadrilaterals cannot in general be extended to the plane
or gace in such a way that the flexion character of the data is reasonably
accounted for. Flexions of curves and surfaces within the euclidean space
are not susceptible to reasonable extensions into space; hence if more objects
are concerned, such flexions cannot be brought together in a group, and in
order to relate them to the group of automorphisms of euclidean space in a
more profound way, highbrow devices such asthe theory of sheaves are required.

The Figures78 and 79 are topologically equivalent, but there is no topologica
mapping of the plane onto itself that redises this equivalence — indeed such a
mapping cannot exchange the interior and exterior of the clased curves where
the two tails are situated. It could be redlised by moving into space, but there
one can again find topologicaly equivalent figures that are not equivalent by
means of a topologica mapping of the whole space onto itself. Moreover, the
topological structure of figures in space is much more important than the
unfathomable group of topological mappings of space on itself.

In particular, prejudice arises againgt the combinatoric structures if auto-
morphisms are too much stressed. The combinatoric structure of Figures 60
and 61 is not accounted for by any classcd geometry of the plane: there
is no reasonable mapping of the plane that continues the isomorphism of
Figures 60 and 61, and in generd there is no way to embed the isomorphisms
of isomorphic graphs into agroup.

A great ded of geometry is and occurs within space. It is true you can attach
to a planet a copy of space in order to interpret the planet’s motion as amotion
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of one euclidean space with respect to the other, that is, as a sequence of map-
pings of gpace upon itself, a sequence of automorphisms. Moreover this can be
extremely useful if you want to study the centrifugal forces exercised by, say,
the rotating earth on a free faling object or on ar and water streams. It can
perhaps even be useful to attach a whole moving space to a driving car in order
to understand what happens if it goes into a curve. But a car dso has wheels,
and there is no need to attach separate spaces to the wheds in order to drag
in automorphisms. Moreover, a car is flexible, its doors can be opened and
closed, and this mapping of the open on the dlosed car does not extend in any
reasonable way to space in order to be put into a group. Bodies of animals
in movement are flexible systems according to certain combinatoric structures;
the mappings expressed by their movements can be understood as isomorphisms,
but no part isthen played by automorphisms, either in the sense of some classicd
geometry or in any other more extended sense.

A drastic example of that confusion is found in amost dl New Math text-
books: opening and dosing a door as inverse elements of a group. What group,
and on what set does it operate? On the two states of the door? But what does
opening perform if applied to the open door and closing to the closed door?

This is the point where the prominence of the group of automorphisms,
as an aspect of the Erlanger program, fails: in dl that happens within the space,
and which has not extension, or no relevant extension, to space as awhole.
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PUTTING INTO GEOMETRICAL CONTEXTS

8.1. “La représentation de I'espace chez I’enfant”

The title of this section is the same as that of a book by J. Piaget-Bérbel
Inhelder* which, in spite of serious objections about its globa approach and
about many of its details, | rate highly. Even more than Piaget's other work
that touches mathematics it should have deserved from mathematicians serious
criticism rather than mere shrugs of the shoulders.

Initialy 1 did not mean to discuss Piaget too much in this chapter, but while
| was writing it, the need became more and more urgent. Nevertheless | will
restrict my criticism of Piaget as much as is feasible because in spite of the
variety of its aspects his work does not contain enough elements to take one's
bearings on it.

| put the title of Piaget—Inhelder’s book above the present section because
my first considerations will center around two words contained in the title,
“espace” and “representation”.

82. ace

“Space” is an expression that from the title to the last page occurs a thousand

times in Piaget—Inhelder’s book, often as an adjective. | did not put it into the
title of the present chapter, and there were reasons why 1 did not. Space, whether
as a mental object or as a concept, is rather the endpoint of a development,
though not in the sense of a bearing — this would again be a wrong perspective.
Not until a highly advanced mathematical context is reached, does “space’

get a meaning. On long trajectories the word “space’ can be dispensed with as
a mere term, and even as a mental object it is not required. In no way does
the constitution of the usual mental objects in geometry depend on that of the
mental object “space’, whatever this may bel

Greek geometry and philosophy do not possess an equivalent of our “space”.

The universe is finite and the fact that, according to one of Euclid’'s postulates,

every straight line can indefinitely be extended does not imply anything about
the medium in which this should be possible. Mentally such a medium may
somehow exist, but no attention is paid to it, up to Cusanus and Newton, say.

The etymological root of space is spatium, which means distance. Space and its

* Paris, 1948. English Trandation: The Child's Conception of Space, Routledge & Kegan
Paul, London, 1960. — For a few quotations this English trand ation has been used, though
a some placesit does not match the French origind; a one place to be quoted, however,
the trandation is an improvement on the — incomprehensible — French text.

223
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analogues in other languages originally mean a closed thing, and to indicate the
very big space modern terminology was enriched by “outer space”.

Before going further, | shal give examples of the often more technical use of
the word “space’, with the intention of showing the direction | wish to avoid.

The euclidean space — <0 caled because the geometry studied in and accord-
ing to Euclid's Elements implicitly presupposes at least something like this —
includes points, connected by lines, contained in planes, forming circles aslarge
as you wish, al over the world right angles are equal, and what happens far away
with the geometrical objects can be predicted here, because in dl triangles,
however big they might be, the sum of the angles is two right angles. From the
closest neighborhood one extrapolates to ever bigger distances, and this then is
the mental object, caled Euclidean space, for which Euclid himself had no
name.

“Geometry” originally meant measuring the earth, as performed by surveyors,
but this practical use was never stressed in Greek geometry; it was rather held in
contempt. Eratosthenes managed to measure the whole Earth from a restricted
piece of land, and Aristarchos did the same with the distances and szes of the
Sun and Moon. The proper domain of astronomers, however, was measuring
angles. How this was done, is not told in the Elements though angles of a certain
measure — right angles — occur in its theorems. Line segments of a definite
length are of course not met with in the Elements, and only with an illiterate
dave does Socrates speak about sguares of so many feet.* What counts in
euclidean space is the equality and the ratio of line segments.

The euclidean space with al its objects is arich structure, athough it is poor
if compared with dl | perceive around, its colours, polished and rough surfaces,
sounds, smells, movements. But thanks to the impoverishment it furnishes a
certain context, which for some reasons suits us extremely well —thisis a point
| ill have to consider more closely. Anyway this context has been accepted as
geometry for centuries, this mental object of euclidean space as if it were an
objective datum, though efforts have been made to describe it more precisely
and more efficiently than Euclid ever did. More precisely — this means axiomatics
like PaschHilbert's; more efficiently — this means the agebraic approach from
Descartes to the modern version of metric linear space of three dimensions.
Elsewhere** | have sketched this development.

This euclidean space has never been an am in itself, but rather it has been
the mental and mathematically conceptual substratum for what is done in
it: for constructions with a pair of compasses and a ruler, or with only a pair
of compasses, or with a ruler only, for constructions by means of algebraic
equations or purely mechanical constructions, for deducing properties of such
figures, for proving or refuting hypotheses about them.

In the more recent development of geometry it was an important discovery

* S0 does Theaitetos when he quotes Old Theodores.
** Mathematics as an Educational Task, Chapter X V1.
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that with the ruler alone one can go a long way, for instance in the theory of
perspective and for dl properties relevant in perspective. A methodological
principle of mathematics, ever more systematically applied since antiquity, is
purity of method. In the example | just cited it meant that as soon as one
studies properties which depend on the ruler only, one must choose a sub-
stratum which is restricted to points, lines and planes in their mutual relation.
This then is an even poorer structure, the projective one, but the relative poverty
can be an advantage. Wealth, if dispensable, can be a hindrance. In the present
case, in one respect, the poverty was too pinching; to embellish the structure,
space had to be enriched by points, lines, and a plane at infinity, and this then
was projective space. A variant on that principle: if paralelism isincluded in
the fundamental concepts besides rectilinearity, one gets a structure — affine
space —which is poorer than euclidean and richer than projective space.

Another evolution was that towards non-euclidean space. One started doubt-
ing whether the neighborhood, as one thought to perceive it, determined the
remote depth of space as it had been assumed. If the sum of the anglesin a
triangle would systematicaly differ from the supposed vaue of two right angles,
space would look different — curved, whatever this might mean.

A third evolution away from euclidean and the other spaces was into more
dimensions, even to an infinite number of dimensions. Geometric language
became a suggestive and creative device to organise quite different domains —
analysisin this case.

And then the fences came down: structures are created according to on€'s
needs, and if they are related to structures that had formerly been called space,
or if they involve visua elements to be uncovered or stressed, they are cdled
spaces. metric spaces, topological spaces, discrete spaces, and 0 on. There are
good reasons why mathematicians did this: insght can be deepened and ter-
minology can be simplified if various structures are brought together under one
heading.

83. “Représentation”— The Mental Object

In the English version of Piaget—Inhelder représentation has been translated by
“conception” which shifts the stress even more to concept attainment. | am not
sure whether thisis correct.* If one looks only at the titles, theoretica introduc-
tions and conclusions of the chapters, and sections of Piaget—Inhelder's work,
one can indeed get convinced that the authors have tried to investigate the
child's conceptual approach to space or rather to find out which features of

* Another work — J. Piaget, Barbel Inhelder and Alina Szeminska, La géométrie spontanée
de I'enfant, Paris, 1948 — has become in the English version The Child's Conception of
Geometry. One may rightly doubt whether there is any spontaneous geometry in this work
but anyway “conception of geometry” is nonsense. In the footnote to Section 81 dif-
ferences between the versions were signalled as a genera fact; actualy they are rather
frequent.
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some adult conceptual approach to space can be traced in the children’s mind.
This underlying adult conceptual approach is then the one the authors knew
from the literature, in particular the one about the Erlanger program.

However, | am not sure whether for Piaget-Inhelder’s work this conceptual
approach meant much more than an organisational pattern and some theoretical
frill. The requirements are rather designed to observe the child's representations,
Vorstellungen in Kant's sense, intuitionsas some others say, or “mentd objects’,
as | prefer to cal them. They repeatedly distinguish the perceptive, the represen-
tative and — far away — the intelligible space, but the aspect they focus on is
representation — sometimes mentally and most often mentally-graphically
recorded.

84. TheMental Object in Geometry

In no part of mathematics do mental objects serve o long before, or even
without, concept formation as in geometry. Images and imageries are more
efficient if they represent figures and spatial congtellations than if they represent
numbers. Small numerical quantities can be supported efficiently by images,
actual and imaginary ones, but this support doesnot reach far in the quantitative
world and so is soon renounced. The numbers 3 and 5 are unsatisfactory
paradigms of arbitrary natural numbers and their sum and product fal as
paradigms of operations on arbitrary pairs of numbers. On the other hand each
triangle that is drawn in anot too specific way is a good paradigm of the triangle,
each pair of line-segments is a paradigm of the pair of line-segments if the
am is to show what the sum or the product is of two lengths. One can show
other people what a paralelogram is, a rhombus, a square, what are diagonds
and what it means to say that they halve each other, that they are perpendicular
to each other, that they are equal. Without bothering onesdlf or the other person
with concepts, one can introduce words to indicate them and restrict onesdlf
to examples to explan what the words mean. One can explore widely the
geometricd domain without forming concepts, so widely that finally over-ripe
concepts drop in one's lap. One can even disregard the formalism characterising
traditional geometry and for along timebe satisfied with demonstrative linguistic
means and wait for relative and more symbolic linguistic tools to announce
themselves. For these and many other reasons geometry is the field where one
can fruitfully look for symptoms of learning processes, were it not that each
investigator carries his own geometrical education as blinkers for himself.

By “geometricd education” | do not mean something that starts with the
first traditional geometry lesson. Many geometrica objects and concepts have
been formed early, most of them at the primary school age and some of them
even earlier, though they do not yet bear verba labels, or at least not those
labels that we have learned to attach to them in our geometry lessons.

If one compares this with the content of Section 8.2, it becomes clear that
my am is not the geometry, nor a system of geometries; before | can arrive at
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gpace or spaces as mental objects, | must ded with mental objects which are
understood as geometrical objects, are lodged within the space. As geometrical
objects they will in alater stage be placed in a space, but as mental objects they
are first of dl in a context, namely a geometrical context. | have indicated
earlier* the didactica significance of contexts, grasping a context as a necessary
condition for more than mere agorithmic action.

85. The Context of the Rigid, Congruently and Similarly Reproducible Bodies
asan Example

| have no doubt that geometric education starts very early, and that this early
start has much to do with the fact that the geometric context suits and pleases
us 0 well. Colour seems to be a more subtle case than geometric shape.

Firg of al, rectilinearity, in the natural environment of man exemplified
by the gtraight posture, the stretched limbs — arms, legs, fingers — the stalks
of plants and trunks of trees, and the straight way, which is the shortest, the
most direct. Among the first tools, made by man, is the arrow, paragon of
rectilinearity, and as civilisation progresses, o more frequently and forcefully
man is confronted with objects and processes and dlicited to actions that suggest
or represent rectilinearity: gticks, pins, rims, edges, paths, folds, cuts, stretched
strings.

Flatness is perhaps even more frequently and forcefully suggested, by paving
stones, floors, wdls, cellings, tables, benches, roofs, sheds, boxes, lids.

He is confronted with parallelism as often as he is with rectilinearity, again
of borders of objects, roads, gates, in planar divisions, in wire-nettings, palisades,
rows of houses; right angles are suggested by perpendicularity but dso by the
angles of more or less carefully made objects. Even in the natural environment
man has become acquainted with mirror symmetry, polygonal symmetry, and
axial symmetry; 0 did stone age man try to imitate them and by this means
educated others to see and appreciate them.

Objects that suggest circles are rare in the natura environment but they
exist: Cross-sections of trees, sun and full moon, the horizon. After the whesl
was invented, man was — dready in the cradle — showered with round objects.
Bdls and rolling playthings suggest spheres and cylinders; to tell a child what
is acone you say ‘aclown’shat”. However regularly or irregularly something
is formed, it is influenced by geometry and suggests geometrica shape. Natural
production, craftmanship, manufacture, and industry have taught us congruence
and similarity, in particular the similarity of playthings that imitate the world
of adults.

| will leave it a that. | shdl return to these examplesto discuss details. Here
they have served to make it clear how the geometrical context comes about —

* Weeding and Sowing, p. 242 .
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| mean the context of euclidean geometry, or phenomenologically described,
that of the

geometry of rigid, congruently and similarly reproducible bodies.

They are acquired early, dl these mental objects, so early that it is difficult
to digtinguish that which perhaps is innate. Mental objects like rectilinearity,
flatness, paralelism, rectangularity, rectangle, square, sphere, cube, symmetry,
congruence, similarity are, as far as they are mental objects determined in a
simpler, clearer, and sharper way than non-geometrica ones like plant, tree,
animal, colour. If this is duly realised, we need not be astonished about the
certainty of our recognition of geometric objects.

Notwithstanding the early start of our informal geometric education, the
fact that the formal one starts o late is to be understood in the frame of the
history of education. Intellectua education, which included geometry, was
generally conceived of as concept formation. The mental objects, as an ided
material to work with, were most often neglected and so they are even today,
in educational theory and psychology. Or rather, one disregards the distance
between mental object and concept, identifies them, confuses them and by
this means does not do justice to either.

There is a world of difference between our examples of geometrical context
and the laboratory context, in which Piaget's subjects are placed, as well as
with the theoretical frame of the Erlanger program. In the world as we view it
the first and foremost things are bodies in space. Their congruence or similarity
is of course related to certain mappings, which may be made explicit according
to the needs that are felt. To be sure, these mappings can be extended to the
whole space; they are redtrictions of those globa mappings which together form
the group of similarities of space, but this is an idea, far away, a a remote
distance where geometry has aready been sufficiently mathematised. (I admit
that even in Piaget-Inhelder's work it is not operationa — group theory has
been dragged in as a mathematical frame and as an organising element.)

One may object that in any case the group of similarities does not clash with
that which we have in mind as the context of rigid bodies. This is correct. To
sy it in aterminology | have used in another connection,* the Erlanger program
idea of the group of similarities is the apotheoss of this context. In the next
section, however, we introduce other geometrical contexts which do not fit
into the frame of Erlanger program.

8.6. The World of the Boxes

With much eloguence | have exerted myself to convince the reader of how the
mental objects of euclidean geometry are forced upon us, from bow and arrow
to baby spoon to televison aerid. This demonstration, however, was a bit

* Mathematics as an Educational Task, p. 171.
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smpligic. One might be led to believe that there were nothing else but this.
If it has been understood this way, | have missed my aim. Yet | put into the
title of the section the warning “as an example’. There are other contexts,
however, and the following is one of them.

| chose the term “boxes’ for the geometric objects | am going to consider
(right pardlelepipeds), because this article is available in the richest variety —
planks remind one of something with one aspect much larger than the other
two, and bricks are represented by too small a number of models. But if | speak
of boxes, one should think as well of chests, cupboards, rooms (of appropriate
shape), books (with flat backs), and as many other things as one would like to
invent. You may consider the box as a structure with 8 nodes and 12 edges, but
then of well determined lengths, you may if you like add the side and space
diagonals, you may number the vertices, orient the edges and concoct even more
variations. They can be quite diverging structures but the conclusions | wish to
reach will remain the same.

| sad that mental objects like congruence and similarity are suggested to us
by the world we live in. It is true, but sometimes other kinds of equivalence are
even more strongly suggested as mental objects. In the world of the boxes we
are told that a box is a box. Yes, a box isabox, but not in the way that a cube
is a cube, or a sphere a sphere. Cubes are similar to each other, as are spheres.
Boxes are not. What then do we say about boxes?

In order to map one box onto another in a gentle way, we have to do some-
thing with its edges, shrinking or expanding, but of course the same with parallel
edges. What kind of mapping isit? Take an “origin” and a rectangular system of
axes, put a box with one corner into the origin and with its edges aong the
“positive’” axes. The mapping of one box on ancther is expressed in coordinates
on this system of axes by

Ty, X2, 377> Ty, 0%, 003%371,

a multiplication dong the axia directions with factors e, , s, a3, respectively.
It is a mapping extending to the whole space — line-segments parallel with
the first, second, third axis are multiplied by «, , a5, a5, respectively. Let me
illustrate it by drawings in two dimensions, that is, a rectangle D instead of a
box, two axes, and ey =2, a, =3 (Figure 83).

N

fD

A%

Fig. 83.
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Such a mapping is caled a dilatation according to three orthogonal axes —
let us briefly say: a dilatation. It is an affine mapping athough not a very specia
one, since each affine mapping can be split into arotation and a dilatation.

Is this dl we have to say about boxes and their mutual relations? No, |
can do more with boxes than change their edges. | can dso displace them as
rigid bodies. By a trandation such a box D gets a position D' which does not
any more lean againg the axes but with edges till paralel to the edges of
D (Figure 84). D'too is abox and if | subject it to our dilatation f, | again get
a box; the two boxesfD and fD' differ only with respect to place; corresponding
edges of D and D' were multiplied by the same factor, 0 they are equal.

N

D’

Fig. 84.

N
7

Rather than to translations, | can subject the box to rotations. By rotating
D | get it into a new position D" (Figure 85), with edges which are no large
parallel to the aforementioned axes, a fact which has momentous consequences.
If now D" is subjected to the dilatation f, the result is no larger what we have
cdled abox — rectangularity islost.

e

Fig. 85.

Dilatations apparently are things which belong to boxes. They are the map-
pings that characterise the world of boxes. But each box has as it were its own
stock of dilatations. A box is kept a box if it is diatated according to axes
pardlel to its edges. Or, from another viewpoint: the dilatations do not form a
group, the product of two dilatations according to different triples of directions
need not be a dilatation any more. If you want to make a group of it, you get

the total affine group, which treats all paralelepipeds dike, and which does
not appreciate beautiful right boxes as such.
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Well, there we are: the euclidean geometry with its group of similarities does
not dlow us to assert that “a box is a box”, and the affine geometry does not
know any boxes at al. What are we to do about it?

The mistake — if one may cdl it a mistake — is in extending to the whole
space the mapping that transforms one box into another. | sressed this as
early as Section 7.7. Here it is confirmed again. It is often meaningless or even
obnoxious to extend mappings of figures in space onto each other to space as
a whole — think of the parked and driving car, the closed and open car! Why
then is it done in other cases and with much success? It is done in order to force
the whole thing into a group, to interpret the various mappings of figures, say
spheres (or cubes), onto each other as mappings of a larger structure, euclidean
space, onto itself — extended mappings, which together form the group of
automorphisms of euclidean space. Yet if one tries the same with boxes rather
than spheres, one does not succeed as pleasantly: one gets embroiled with a
group that does not respect “boxness’.

On the other hand the suggestion that “abox is abox” isvigorous, as vigorous
as the suggestion of supporting the assertion by a good mapping which makes
from one box another one. These are strong visual stimuli in a stage where there
is not the dightest need for extending such a mapping to space as awhole.

Mappings have ill to be viewed phenomenologicaly more broadly, but this
much can be said, that if mappings present themselves in any geometric context
whatsoever, they are first of dl mappings of restricted parts of space, which
can be indicated or filled by bodies. Extending such a mapping to the whole of
space, even though it be possible and meaningful, is not something that goes
without saying — how long have geometers tinkered with congruence theorems
where mappings would have made things easier? In history the step towards
mappings of the whole space has been conscioudy taken as late as the 19th
century — this is witnessed by the projective space, which has been created in
order to be able to extend projective mappings to the whole space, and by the
device of Moehius geometry where space is augmented by one point at infinity
to account for inversions and make planes and spheres the same sort of things.
Higtoricaly it was an extremely important step to view mappings more than
locally, to embed them into a group, with momentous consequences, though aso
withthat of a dogmaticaly interpreted Erlanger program — a bodice for the adult
mathematician, and an oversize suit, bought for growth, for the young learner.

| could have put this section aso in Chapter 7 — in or after Section 7.7 — as
a counter example to the predominance of automorphism groups of structures.
After some hestation | put it here, in order to stress its positive meaning, as
an example of ageometrica context.

| could give more examples, but | will wait; first | should say more about
geometrical context in general. At thismoment only afew variants of the world
of boxes:

the world of rollers,
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(or cylinders, if you prefer), a continuous sequence, stretching from flat discs to
thin reeds,

the world of dunce's caps,
that is cones,
the world of pointed roofs,

square pyramids — and so on. Similar stories as those | told about the world
of boxes can be told about these worlds.

8.7. Intermezzo-Piaget

Piaget's way, a least regarding the structure of his work mentioned in Section
8.1, has been dictated by what he had experienced as the gig of the Erlanger
program, or to use our terminology of Section 8.6: he has bought a suit that
looks like a bodice but in fact is dangling around his laboratory experiments,
and asfar asit is operationa it functions as blinkers.

According to Piaget the development proceeds from the poor to the rich
structures, from large groups of automorphisms to small ones, according to the
sequence

topological, projective, affine, smilar, congruent.

There is not any reason why this should be so, from poorer to richer. If there
were a definite line, one would bet that it is the other way round: the richer
structure presents itsalf with the greatest aplomb; impoverishing means abstract-
ing, taking away. People and things are first sngular objects, with proper names,
and they finish with sorts and labels — from richer to poorer. Yet it is not that

smple. Initidly al that moves, is a car; then VW, Duck, Peugeot become more
important concerns, but finaly “car” wins. Initialy each old man is grandpa;
then the term s restricted to two specimens a most, with perhaps the grandpa
of a friend added; finaly admogt every child appears to have agrandpa. Initialy,
Utrecht, say, is the dose neighborhood, and the other side of the Amsterdam-—

Rhine cana is The Netherlands; then Utrecht becomes alabel for a vast array
of dreets, squares, parks, which look like those of the neighborhood; later on

it becomes the proper name of a geographical unit enclosing al such spots,

and finally some political administrative unit.

It is neither a trend of ever more abstract, nor is it the contrary. It is
rather a case of developing new contexts, which may overlap as they may be
incomparable. In Section 85 | pleaded for the context of the rigid bodies with
arguments which | could have extended tenfold or a hundredfold, arguments for
its developmental primordiality, but if Piaget were right, this context would
be the highest rung of the developmental ladder.

As a matter of fact levels have to be digtinguished for forming contexts, for
placing objects and operations into contexts — Piaget speaks of the perceptive,
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the representative, and finally the conceptual space. He admitsthat perceptively
a child may be on a higher rung of the ladder than representatively. “ Representa-
tive" is what | indicated as “mental object”, though Piaget uses it dso in the
sense “being able to draw the object”. In Part One “Topologica space’, for
instance, “espace perspectif” is followed by “espace graphique’ as a second
chapter — the quality, or rather the lack of quality, of drawing becomes the
criterion of the topological character. But even later mostly — amost dways —
the drawn record is the only criterion of the mental representation: in order to
prove their existence, mental objects are to be drawn. | think thisiswrong, but
| will delay discussng this point.

Piaget’'s claimed priority of topological space is dso a point to be discussed.
In one respect, | anticipate the discussion: what is presented as topology by
Piaget, is next to nothing, and partly it may even be asked whether it is topology.
| tackle this here because it is essentid for the question of how far the develop-
ment of topologica space must have proceeded before that of projective spece
can start — a question which must be asked again for other pairs of rungs of the
Erlanger program ladder. If such questions are not answered, the clam that
this space precedes that does not mean much, if anything.

Is it topology if the child does not distinguish a ball and a potato, or if the
mental object “topologica sphere’ (closed surface of genus 0) has been formed?
It seems that Piaget is satisfied with the first. With regard to the straight line
(he says “the projective ling” though it is the ordinary one), Piaget's require-
ments are much higher. Here he requires, indeed, the formation of the mental
object “straight line”, if projective space is to become manifest, since for Piaget
“projective space’ means the ability to look and draw according to perspective,
from one's own or an imagined viewpoint. This projective space is the precondi-
tion of affine space, which again involves 0 little that one wonders why o
much progress in perspective should be required as a precondition. Moreover
— this too must be tackled later on — the ability of looking and drawing accord-
ing to perspective is a totaly different thing from the congtitution of mental
objects like straight line, plane, paralelism, congruence. Without laboratory
experiments everybody knows that perspective as an ability is much more
difficult and is acquired much later than the euclidean context surrounding the
rigid body. But let us skip over thistrivial fact.

For the acquistion of the mental object “straight ling” Piaget makes exor-
bitant demands. In Section 85 | casudly sad how straight lines appear as

arrows, trunks, dicks, pins, rims, edges paths, folds, cuts, stretched
strings,

but none of these can meet with Piaget’s approval. Straight linesmust be acquired
as vison lines, and even stronger, the global constitution of the straight line must
be preceded by the loca one of the callinearity of three points.

Certainly, the vison line — as a light ray — is extremely important, and just
as certainly we will draw to it the attention it deserves. It would be of interest
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to know when this appears in the development.* But the straight line as vison
line is an advanced stage — there are even many adults who do not know how
to use this property. Visud line is a property of the straight line but | refuse
to make it a congtituting property.

For Paget it is just this. Why? Because of the constraint of the system.
Projective precedes affine precedes smilar precedes euclidean, projective means
looking and drawing perspectively, perspective vison takes place dong vison
lines, thus it is required that the straight line is earlier as a vision line than as
the mental object that has to do with rigid bodies and their edges, with flexible
long objects in their preferential state, with movements directed to an aim.
To satisfy the system the straight line must be congtituted as vision line and in
no weaker way.

Is this to be judged as a disastrous influence of pseudo-mathematics? Yes
and no. No, because it may be appreciated that somebody has investigated, or
tried to investigate, how the understanding of the straight line as a vision line
comes about. Y es, because this pseudo-theory may have prevented investigators
from looking for the true origin of the mental object “straight line”.

I will now leave the so-caled projective space and turn to Piaget's affine**
space. The experiments about it were made with the so-caled Nuremberg
scissors or lazy tongs, in my terminology a context of flexibility rather than
affinity. Well, it has to do with paralel lines, and this may be termed affine.
One could even materidise a two-dimensiona flexible lattice that as Nuremberg
scissors demonstrates a specid affinity of the plane — a very specid one which
is dill dominated by the idea of flexions since it is the diagonals rather than
the sides of the compartments that is variable.

Experiments with the Nuremberg scissors are undertaken in order to observe
“conservation of paralelism” by the subjects. It is the only place in Fage's
work where the transformations are made explicit with respect to which con-
servation is meant: it is affine transformations, abeit of a very specid kind
and in a specidised materidisation. The subject must first predict what will
happen when the stissors are opened, or more widely opened, in particular that
rhombuses come into existence with “conservation of pardldism” of the sides.
As far as | can judge there was no account taken of whether any of the subjects
dready knew this plaything. Anyway this — conservation of the pardldism
structure under the movements of the Nuremberg scissors — was the origind
interpretation of conservation of paralelism, but while the experiments were
going on the interpretation shifted; the experimenters became inclined to
understand “conservation of parallelism” as the ability to copy parale linesby
drawing —in Sections 8.9 — 9 we will separate clearly this ability of reproduc-
tion from that of constitution of the mental object, which have been mixed
up here.

* When reading the reports of experiments from Piaget’s laboratory, | was astonished that
it is never mentioned whether subjects closed one eye while aiming.
** |n the translation one reads “affinitive” instead of “affing”.
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Yet the experiment with “conservation of paralelism” is wrong as such;
it is produced by the same dogmatic interpretation of the Erlanger program
which we identified earlier: pardldisn is an affine concept; 0 as a menta
object it is not well constituted until its invariance with respect to affine trans-
formations is edtablished. In the case of topology Piaget did not make such
heavy demands — the topological mappings were not even touched. But the
demand itsdf is by no means justified, like that of the constitution of the
sraight line as vison line. History at least is a proof to the contrary. Since
affinities are quite a recent discovery, may one conclude that mathematicians
before that time did not have agood conception of parallelism?

There is not the dightest doubt — and in Section 85 | have tried to convince
the reader of it — that paraldism as a mental object starts early; it cannot be
difficult to prove this by good “conservation” experiments. There is no reason
why this conservation should be related to the affine group. Peralelism is
perceived within the context of rigid bodies and the first and best way to
observe it isinjust this context. A subject is shown the parallel edges of aruler,
of asheet, of abox and asked what happens to them if the object is moved. |
do not know whether anybody ever made this experiment, but anyone who has
studied children’s behaviour will not have the dightest doubt that this conserva-
tion of pardldism is congtituted early. And this decides the question. It is
nothing but dogmatism to require more. The fact that paralelism is preserved
by alarger group than euclidean motions — the affine group — is no argument to
require invariance under this larger group as a criterion for the constitution
of pardldism. With the same right Piaget could have required the invariance
under the Moehius group for the mental constitution of the circle, which alows
one to consder draight lines as a kind of circles; or to require for the incidence
of point and line as mental objects that invariance is established with respect
to dl contact transformations. A mental object need not wait to be pronounced
constituted until its invariance is established with respect to dl mappings that
can be contrived in dl possible contexts.

In the preceding | have tried to do justice to Piaget’s expositions on conserva-
tion of paralelism as far as they are inteligible and consistent. The experiments
have little to do with these expositions, the experimenters observed other things
than the conservation of paralelism. Moreover the theoretical text around the
experiments is often unintelligible, possbly because of internal contradictions,
which might be the consequence of double authorsnip. The experimenters
sad they had difficulties in explaining to children what “paralel” meant, or
rather they were obliged to have these difficulties by the system (p. 316):

First of dl, how is one to pose the question in order to make the idea of pardlelism com-
prehensible? Presumably by asking whether the lines “dant the same way”, snce any
mention of idess as ‘equidistance introduces far more complicated notions and measure-
ments which themselves depend on assumptions about pardldism (i.e. the pardldism of
lines a right angles to those under condideration, thus yidding a circular definition of
pardldism in terms of equidistance).
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| stop here for a while to give the reader the opportunity to think about it.
The definition of pardlelisn by equidistance involves no circle at al, but the
reasoning between the parentheses contains a twist that deserves to be straight-
ened out. | pass over the question whether one should define paralelism by
equidistance, whether it is didactically the best way or even a good way.
Anyway it can be done, and it has been done in the finest setting by Kuno
Fladt. Distance from a point to a line can be taken in the sense of shortest
distance or of orthogonal distance and there is not the dightest reason why
measuring aong fresh parallel lines should be required a priori. The experience
that in euclidean geometry the lines aong which the distances are measured, are
again paralel, is an a posteriori fact, which a a certain level can be formulated
axiomatically.
But let us continue reading:

Alternatively, to spesk of two straight lines “doping the same way” means introducing the
concept of both straight tineand space orientation [in the origind: inclinaison ou direction].
Now we have already seen in Chapter VI how late the straight line comes to be visualized . . .

One would be inclined to say that if “straight ling” comes so late, pardlel lines
come even later, thus why is there any further argument (indicated here by the
dots, where | interrupted the quotation). But this should be understood as
follows. pardldism of sraight lines is discussed with ordinary drawn lines,
whereas the lines that are said to come that |ate, are the vison lines of the so-
caled projective geometry. In order to comply with the system, where projective
space presupposes affine space, the straight lines are forbidden developmentally,
but somehow they must be alowed, because otherwise no experiments on
parallel lines could be performed.

... and as for the concept of orientation [in the origind: inclinaison] this is a matter of
either measuring angles or dse finding some other method of determining the inclination
[in the origina: I'identité de direction]. But the idea of pardlelisn gppears at the same
time as that of angles, and this is hardly surprising since a pair of straight linesintersect to
form an angle wherever they are not parallel . . .

Similarly one could say: the concept of straight line occurs at the same time
as that of radius of curvature because as soon as a line ceasss to be straight,
a finite curvature can be calculated. Or: the concept of length occurs a the same
time as that of area, because as soon as a line ceases to be thin, it getsan area.
Let us admit that any idea cdls up its negation a the same time. The negation
of being pardlel may indeed be formulated as “forming some (pogtive) angle’
but thisis far away from the idea of angle itself, which includes knowing at least
what equal angles are. As amatter of fact thiswhole story is flatly contradictory

to what has been sad a few pages earlier on the relation between affine and
projective geometry:

... and in the next chapter we will see that these twin [original: complémentaires] concepts
are psychologicdly interdependent. If this is the case, it necessarily followsthat the concept
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of angle cannot precede that of parallelism, nor can it serve as measure of paralelity of a
pair of oblique lines.

The French text is here incomprehensible probably by a clerical mistake (omit-
ting a few words). The trandlator tried to make the best of it, though | would
have preferred “serve to measure whether two lines are parallel”. It continues:

This leaves us with the idea of identity in orientation [direction] but thisis soon ruled out
when it isrealized that the concept of spatial orientation [direction] is the foundation
[point de départ] of the co-ordinate systems themselves. And as will be seen in Chapter
X111, their development is an extremely complex and protracted affair . . .

A similar reasoning would be: Addition is difficult because multiplication rests
on it. Or: the area of a rectangle is a difficult concept because it is needed for
the definition of integral.

As to the whole story: anyone who has ever been busy with children and in
education knows that angles and angular measures are much more difficult
mental objects than paralelism. It is not a problem to explain, say, to a five-
year old what pardle lines are: show him one example or two, and perhaps a
counter example. With somewha older children one can even successfully
analyse the phenomenon “paralelisn”’. To do this one need not be able to
measure lengths, et done angles.

Moreover the claimed dependence of paralelism on angles is inconsistent with
the clam that developmentally affine space precedes euclidean space. But let
us read further:

In short, it isno smpler to imagine the paralldism between two lines than between the sides
of a dosad and well-organized figure like the rhombus. But it may be asked, surely it would
be smpler to percelve, even if not to imagine? Here the result of comparing perceptua
estimates [données] is very much to the point, for actual study of the perception of paral-
Idism leads to the conclusion that the idea of parallelism precedes their accurate perception
rather than being a consequence of it as might have been thought.

Wursten (op. cit.) caried out the following experiment: twenty adults and twenty
children aged between 5-6 and 12-13 were asked to compare the lengths of oblique
lines drawn on cards. Alternatively they were invited to draw vertical, horizontal, and
oblique lines, or dse adjust pivoted metal rods in a paradld position. Wursten's findings
were as follows. first, pardlels are never perceived entirely without errors, even by the
experienced adults. This is a further confirmation of the intellectual, logica character
[caractére rationnel] of geometrica concepts which govern and influence [informent
et corrigent] perception rather than being wholly dependent oniit . . .

Thelast remark is correct, though not as a conclusion of the preceding. A certain
concept is independent of perception not because perception is ligble to errors,
but because the concept enables us to establish the fact that the perception is
wrong.

. . Second, and most important, comparison of variations in thresholds and constant
errors showed perception of tilt [inclinaison] and spatia orientation [direction] to be
extremely poor below the age of 7-8. The reason why young children are better than
adults & comparing the lengths of lines pointing in different directions is precisaly because
they remain indifferent to their relative orientation.
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Here a particularly revealing foot-note is added:

Less difficulty is experienced with vertical and horizontal pardlels. Hence in these two cases
it would seem that perception of parallelity precedesthe idea [notion] of it.

Take along draught of it. “Vertical” and “horizontal” here mean, asin practically
the whole book, even in interviews of children, directions not in space, but on
the table between experimenter and subject. “Vertica” is the direction of the
one to the other, “horizontal” that orthogond to it, dong one's chest. It isin
this world that the coordinate systems of Chapter 13 of the book arise. Walking
around the table, a least mentally, rotating the table, or the drawings on it, is
forbidden. It is aworld locked up in arectangle. In the whole book Représenta-
tion de I'espace chez |'enfant space practically does not occur — the world is
flat and is most often a table, direction means orientation with respect to the
edges of the table. Only the little ones cannot be forced into this frame. They
perform better in the meaningful experiments, which do not depend on the
frame. By disregarding the meaningless frame they show more genuine mathe-
matical insight than the experimenters dlow the older and adult subjects to
show.

| leave it here, but | cannot but ak myself: Is this redly Piaget, or did he
never se the proofs?

88. Reproduction — Symbolic and Ikonic

Researchers — piagetian and others — often show that they did not grasp the fact
that lack of names for mental objects and actions — or lack of knowledge of the
conventional names — does not prejudice anything with respect to the possession
of the mental objects or actions themsalves. But even grasping that fact does not
protect one against serious misconceptions. Even the so-called non-verbal tests
need not prove anything. One cannot measure whether or to what degree the
mental objects (or the concepts) circle, square, draight line, and 0 on, are
present by having the subject draw or in some other way reproduce that figure.
Anyone who has observed children, is familiar with the technical difficulties
they have in expressing their intentions with drawing instruments on paper or
otherwise — intentions that can smply get logt in their failing attempts. | fail
to understand how some researchers — Piaget included — will dare to interpret
the failure to reproduce figures by congruence or similarity as a proof of priority
of topology on euclidicity. Meanwhile more critical investigators have shown
that young children are certainly able to digtinguish a better copy of a circle
from a poorer one and to appreciate them as such. There is abig gap between
recognising two figures as congruent or smilar and being able to copy them
as such, not only for little children but dso for adults unlessthey are gifted with
extraordinary graphic talent. Yet there are ill researchers who forget about
such clear differences.
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The misapprehension is, however, more deeply rooted, in the relation between
reality, image, andlanguage, or rather in the way that thisrelation is experienced.
Everybody understands what a tree is, though there are border line cases where
one can doubt whether something is till just a tree or is not a tree any longer.
A picture of a tree — drawn or sculptured — will be recognised, at least in our
cultural environment — an Indian from the Amazon or a Greenland eskimo
may view it differently. Here too there are border line cases. how far can the
artist go in the sketch or in the impressionist manner to get something accepted
as being the image of a tree? But besides trees and images of trees there is
the word ‘tree’, accepted dl over the world by English speaking people to
designate a tree, though misapprehensions are possible between people who
pronounce it differently. And finally there is the graphic image t-r-e-e for the
word ‘tred which in print or writing can look differently, known as such to
people who have learned reading and writing.

In each particular case we know very well which ‘treg’ is meant. If the teacher
pronounces the word tree, it depends on the situation whether the pupil points
to atree, or to the picture of a tree, whether he repeats the word tree or writes
it down. Of course miscomprehension is possible, though in general it is not
serious. It is more serious that most of the authors of set theory textbooks
for primary and secondary education got into troubles or dragged users of their
books into troubles with sets whose eements can be trees or pictures of trees
or names or graphic pictures of names of trees and finaly dl of them in the
same Venn diagram.

| tackle this here, not in order to identify this kind of misconception in
experimental tests (they are being made, especidly with logic blocks), but
because | am afraid that misconceptions about reproduction might unfavourably
influence the communication between experimenter and subjects.

The child gets acquainted early with two fundamentally different ways to
reproduce objects and events — that is, fundamentally different in our view:
the picture of a fire-engine in action on the one hand, and besides that the
printed text, which according to the reader contains the word ‘fire-engine
and a story about extinguishing a big fire. The child himsdf can interpret the
pictures and he can check the authenticity of the story by having it read once
more, by the same or another reader. How does the child experience this patent
contrast — patent to us — between ikonic and symbolic means of reproduction?
| cannot answer this question. Is the contrast really felt as such or is the one
picture for the child just as much pictorid as the other? Is the adult more able
to look at pictures, in the same way that he can take longer steps, climb higher,
speak louder? ‘Writing' and ‘drawing’ are often synonymously used by children,
asare ‘reading’ and ‘looking at pictures'.

One can certainly observe with children, as regardstheir internal and external
means of expression, a development from the ikonic to the symbolic. Yet the
question that puzzles meis whether and when achild drawsaborder line between
ikonic and symbolic representation. If a 2—4-year old draws — as it seems a
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random — a few lines and asserts this is Uncle John or a doll-house or if he
answers the proposition “draw a...” with a seemingly disorganised system of
scratches, is it then true that heis ikonicaly busy, that he hasikonic intentions,
or does he act on the same legd grounds as the adult who clamsto see a “tree”
where there is nothing that looks like a tree? Would it not be more likely that
a child who starts drawing or reproducing in some other way some reality,
is moving in a sphere where the ikonic and the symbolic are not yet separated?
| once observed such a separation becoming conscious.

Bagtiaan (4; 8) who is encouraged to start early to make a ligt of suggested gifts for his
birthday: “Writing by words or drawing by pictures?’

But even if the separation starts early, how long does the process last? | am sure
there are people who never manage it completely, who remain convinced that
atree is caled ‘tree’ because in some strange way the word ‘treg is smilar to
atree, that the word graphicaly reproduces the tree — it iskind of magic belief.
As a matter of fact set theory in textbooks is a proof of what difficulties even
adults can have in this field.

Even if a borderline is drawn between ikonic and symbolic reproduction,
it need not be the one we adults are used to. A drawn picture of a house, which
we think is ikonic, can perhaps be meant symbalicaly, or symbolism may have
dominated its production. Even school-children who are asked to draw their
own house may produce a stereotype which does not resemble their own house,
with stereotyped details such as corner curtains such as they can only have
seen in standard houses in picture books — the symbol of a house.

How does a psychologis manage to have children producing or interpreting
pictures without being sure that the child understands the assgnments as
they are meant, whether they conceive the ikonicaly meant ikonicaly, and
the symbolicaly meant symbolicaly, whether they draw the borderlines as
they are intended and whether they know such borderlines a dl — a least
operationally?

For the experimenter, a drawing of a circle with an inscribed equilatera
triangle has a structure determined by his geometrical experiences; for a child
who has not had much experience with geometrical figures, the figure can be
meaningless, or ornamental, or a picture — ikonic or symbolic — of something,
and the particular view that it has of the figure determines how it would react
to the assignment to copy it. The child may have seen symbols of Fiat, PTT,
VW, and recognises them by some structural resemblance, even though the
various instances are not a dl congruent or similar. But the circle with the
inscribed triangle — what does it symbolise and which details do matter if it is
to be copied? Must the circle be truly round, the triangle precisely inscribed and
equilateral, or which deviations are admissible?

Adults who have not the dightest difficulty to recognise the symbol of the
Netherlands Railways (Figure 86) do have the greatest difficulty to draw it from
memory, and even when copying it, they repeatedly look back at the model.
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«

Fig. 86.

Why? Because it is an arbitrary symbol with no clear context. The circle with
the inscribed triangle, however, can be placed into a geometrical context, built
up from geometrical objects.

Researchers have children copying models without checking whether they
know what it means to copy something. Perhaps up until that moment these
children have only drawn objects. In order to copy something, one must know
what matters. Is the model to be copied an ikon or a symbol? For instance, the
picture of a direction post where the angles of the various “hands’ have to be
respected can instead be the symbol of a railway crossing, with the symmetric
disposition of the crossed arms? Learning to write letters and figures seems to be
a struggle between ikonic and symbolic reproduction. Though ikons of one
geometrical figure, the letters b, d, p, g, have different symbolic values.

Bastiaan (5; 6), who permits himself all liberties with the images of the figuresO, 1, . . .,
9, protested when — in atypewrittentext — thefigure 1 wasindicated by the letter 1

Knowing what matters is a precondition of copying — experimenters are not in
the habit of telling their subjects, perhaps because in their own world it goes
without saying, or perhaps because if they explained it, the problem would be
too easy. Whether Uncle Sam, if copied, gets the prescribed height of his hat,
is different from whether the “stripes and stars’ are forgotten. It is a different
thing to draw some st of teeth, or a set of teeth as a symbol of immy Carter.
There are many shades between the ikonic and the symbolic. Caricature can
show more resemblance than portrait, but then a resemblance with a person
that has become a symbal.

8.9. Reproduction From Geometrical Context

In Section 85 | dedt with the context of the rigid, congruently or similarly
reproducible bodies, in Section 86 the world of the boxes, dso reproducible,
though not that rigid; we will learn of other contexts, even less rigid or s0
individualised that no thought of reproducibility comes about. As a matter of
fact, the objects in our contexts are not necessarily bodies, even if the term
body does not include three-dimensionality. In any case for geometrical objects
the possihility of reproduction is an important feature — reproduction by means
available or created for this specid aim, sometimes with great difficulties. We
know wire modes, plaster models, cardboard models of three-dimensiona

figures, but the most usua reproduction is on the blackboard or on paper,
in books and on shests.
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The prescription which the adult is expected to observe is to represent things
visualy in the way he sees them. Archaic and primitive art, however, shows
that it is not that easy to see things “in the way one seesthem”. A geometrical
theory — perspective — has been created in order to deduce how things are
seen, and experimentally this theory can be confirmed by means of a camera,
a least as far as it is alowed to identify the lenses of camera and eye with
each other as well as the photo-sensgitive layers of a film and a retina. Yet
developing a film and processing a retina image in the brain do not seem to be
isomorphic procedures. In any case the mental image of, say, a cube seems to
differ considerably from the visual one prescribed by the theory of perspective.
Seeing, interpreting, and producing perspective drawings is no naive ability,
but something that must be learned. By no means can | say what the mental
image of a cube looks like — as a matter of fact it depends on a variety of
circumstances. Certainly it involves more and other features than that which
One sees or is expected to see. It involves as much as one needs to recognise,
to make, to produce, and to reproduce cubes. It includes six faces, though one
cannot see more than three a a time and may be unsure about the actua
number, four, or six, or eight. About a man one is facing, one knows he has
a back even though it is invisible; about a house, that it contains rooms and
gairsbehind itswalls.

One has more sense-organs than two eyes, and a drawing may be used to
communiate more than visual perception. The little child does not yet divide
his knowledge about the world into compartments according to the so-cdled
five senses. A 5-year old, ikonicaly precocious boy amplified his marvellous
drawings of arplanes with images of the noise produced by the jet engines.
A 6-year old reproduced the turning flashlight of an ambulance by a triple of
three lights, one in forward direction, one right, and one left. The desire to
depict things other than those which the eye perceives according to the theory,
is not restricted to childhood. The great problem each painter has struggled with
is to process his impressons in a way that they reproduce a more objective
redlity than his impressons do. The symboalic is entangled with the ikonic;
viewpoints are chosen in order to have the ikonic doing justice to the symbolic
— arule even observed by the photographer.

5-6-year olds draw houses with a front and side facade. It looks like an
attempt a perspective though it can be an imitation of a badly understood
drawing method. It can dso witness a reflection, athough not yet governed by
perspective: from certain viewpoints one can indeed see two sides of a house,
but it does not yet matter how this happens in detail. It is difficult to ascertain
what is achieved by posing questionsasthechild readily producesad hoc answers:

Bastiaan (4; 3) has drawn a house with many rooms and appartments. There is only one
bathroom. When asked about it, he answers: “All bathrooms are the same, aren’t they?".

Traditional geometry instruction does not even face the problem of reproduc-
ing. The child is expected to have caught somehow and accepted the adult
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methods of reproducing. A cube is drawn on the blackboard, alegedly in per-
spective, though to avoid too strange a look, with parallel edges. Afterwards
this can mathematically be justified by looking from an infinite distance, as
they say, though a cube so far away would look infinitely small. Even dl the
contradictions are taken over from the adult methods of reproduction, even
those which can only be justified by their usefulness and intuitivity, such as the
usual representation (Figure 87) of the globe with equator and poles — counter
to perspective but suggestive and convincing.

S

Fig. 87.

The perspective is représentation de I'espace, not in the sense of a mental
object but of reproduction on a piece of paper, a method acquired by imitation,
which is systematically exercised by teaching the pupil to see what he (the
pupil) sees — lines, planes, light, shadow — and which is finaly rationdised in
a fully developed theory. But to stress it once more, primarily perspective is
not a geometrical context but a kind of reproduction, side by side with others,
and this remains unchanged for along time.

This does not hold only for perspective. Initialy, and to a high degree,
reproduction is a matter of imitation, even before kindergarten. As soon as
the child comes into contact with older ones, his method of reproduction is
influenced. As a matter of fact adults too sometimes produce baby drawing
methods alongside the more familiar baby language in order to be imitated.

Daphne (5; 1) gave me the drawing of a house with two chimneys which as usua were
drawn orthogonal to the planes of the roof, rather than vertically. | took her to the window
and showed her a roof with a chimney. Immediately she made a correct drawing. This
spontaneous reaction is astonishing. Clearly the origina drawing was nothing but imitation
of what she had seen from another child.

A somewhat complex drawing of a child is a composition of more or less
obligatory parts, combined in a somewhat functional way — the reproduction
of a combinatoricaly flexible structure; what counts is the combination of the
parts. the eyes are in the head, the ears and limbs, perhaps adso the belly are
systematicaly connected to it, the one at the right, the other at the left, the
one besides the other, the one below the other. Parts can be meant ikonically,
but their presence and location is symbolic. Thisis aready a geometric context,
not topological but rather combinatoric, with parts determined by the flexibility
of the structure. The size relations are symbolically rather than ikonicaly
reproduced — this is again not a matter of defective mental objects but of
principles of reproduction (as in the case of perspective) where the symbolic is
dominant or not yet separated from the ikonic.
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However one looks at a cube or turns it, one cannot see more than three
faces at atime. To make a cube, one needs six. The technique that accounts for
it, is networks. On the network of the cube you can see the six faces @ atime,
and as far asiit isnot clear, one can indicate the edges that have to be identified,
mentally or by adhesive tape. This too is a reproduction of the cube, not a
perspective but a combinatoric one, from parts that respect the similarity of
reproduction. Blue-prints are the same; each storey of the building is indicated
separately to scale, where the combination of the parts is marked by specid
signs as well as by stairs and lifts; flexihilities, such as of doors and windows
can dso be indicated. Another method involves three projection planes; plan,
front elevation and side elevation.

Let us cdl this kind of reproduction — that is combinatoric from ikonic
parts and accounting for flexibilities — compository. It is more flexible than
perspective; and in geometry it is a leest as important for reproducing objects.
The child's method is predominantly compository. If he wants to draw the
interior of a house with two stories, after the frontroom of the groundfloor
has been plotted, he has to solve the problem of the composition of the back-
rooms of the groundfloor and the upper front room. Somehow he solves it
— you could say in a primitive way, were it not for the fact that most adults
do not know what to do either. There are techniques of reproduction required
to solveit, such asthe network of the cube, the blue-prints, descriptive geometry,
or artistic sophistication.

But what | would stress here is that the compository method of reproduction,
for instance, of a cylinder by means of a rectangle and two circles, or of acone
by atriangle and a circle, which somehow are attached to each other does not
a dl bear witness to defective mental objects. On the contrary, this way of
reproducing can prove a better view of the mental objects than reproduction
by means of perspective acquired by imitation.

Another method of reproduction is the topographical one, as used on geo-
graphical maps, railway nets, motoring maps, most of them to scae but not
ikonic, with cities, towns and villages indicated by too big spots, while rivers,
roads, railways are shown by too thick lines; with airports symbolised by draw-
ings of arplanes, ways out by circles, bridges and ferries by other symbals. Is
it then a mad idea of a 5-6-year old who draws a network of streets to lay the
stop and priority signs as it were on the ground? The symbolism in the adult
topography is more subtle but it is symbolic and most often conventionaly
symbolic. If we do not draw from the adult topographic reproduction the
conclusion that certain mental objects, such as perpendicularity, are lacking,
we are not allowed to impute to the child such deficiencies.

8.10. Grasping Of, and Putting Into, a Geometrical Context

The examples of the context of rigid bodiesin Section 85 showed how geomet-
rica contexts come into being. Natural production, craftmanship, manufacture
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and industry have made us familiar with geometrical figures, their congruence
and similarity, with rectilinearity, orthogonality, symmetry, paralelism. Tables,
doors, sheets of paper, windows, beds are rectangularly produced and impose
the rectangle as a mental object on us; we are being prepared to accept the
name “rectangle” and to name each rectangle (even a square) a rectangle. Of
course things are not adways as easy. Is a diamond a rhombus or a square?
Standing on a corner can be amore important property than having equal sides.
A long rectangle looks different from atall one, a cylinder lying down different
from a standing one — typical consequences of a geometrical instruction guided,
rather than by the objects, by their drawings. Rhombuses in jigsaw puzzles,
cubes and cylinders from the construction box, fit better into the context of
congruently and similarly reproducible rigid bodies.

Contexts should not be taken for granted, but once grasped, they can func-
tion reliably. This presupposes that the characteristics which matter in the
context are paradigmatically clear.

A child understands early what things are to be classified as chairs, but in
acertain context a chair can be appointed to be alocomotive or a ship. Words
like triangle, square, rectangle can be meaningfully used by little children,even
to recognise these geometrical structures where they are obscured by roughness,
imprecision and rounded corners. A bench (without a back) made from three
paralel planks with two interstices is seen as one rectangle or as three of them
depending on your preference. The gestalt forming procedures that are active
here, are not restricted to geometry. They do not differ at dl from those by
which weinterpret a constellation as adipper, or acloud as an elephant.

The context required for recognising and reproducing figures can be deter-
mined more or less sharply by the data, and whoever wants to interpret the
behaviour of others in such activities, should first analyse how the results are
determined by the suggested context.

Suppose a person is given material, say plates, that differ with respect to

external shape — triangles, circles, squares, and o on,

finish — rounded or sharp comers, rough or polished surface, with grooves
or prickles, and 0 on,

internal shape — with various numbers of holes of various sizes and shapes
(triangular, round, squares) and in various arrangements,

thickness,
colour or colours,
matter —wood, plastic, metal.

Conclusions shal be drawn from the way the subject classifies the material.
For instance one expects some subjects or age classes of subjects to classfy
primarily and by preference according to certain criteria, and one undertakes to
test hypotheses on this behaviour. By varying the number of objects representing
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a certain class, by stressing more or less some differences between class charac-
teristics, by controlling the distribution of the characteristics over the classes, by
coupling characteristics more or less dosdy with each other, one can influence
the results in a decisive way. It can happen that thickness is the most striking
characteristic, because only two thicknesses occur or because there are ten of

them that are regularly ranked. By admitting only two or three, strongly different

colours, the stress can be shifted to colour. If the materia is appropriately

chosen the most striking features can be small and big, or sharp and rounded,
or with round and not-round holes.

Geometrical criteria of classfication can be

congruence,
similarity,

affinity,

combinatorial equivalence,
flexion-equivalence,
topologica equivalence,

but the geometrical context in which such criteria shdl be applied, is not at dl
self-evident. One can tell a 5-year old to disregard thickness, colour, finish, but
if such ingructions are lacking, even a 13-year old might be unable to put
the materia in a geometrical context, and this will certainly happen if strong
enough distractors are built in. This kind of experiment, if undertaken in order
to investigate developments towards geometrical contexts or within geometrica
contextsisapriori usdess.

Ethologists have experimented with more or less vague pictures of owls
shown to singing hirds to illicit fright behaviour; they can tell you how far
they can go with dropping certain characteristics, for a male sickleback the
red belly colour of a putative riva is the signa to defend its territory. Man
— child, adolescent, adult — recognises places, things, persons, and identifies
dases in order to classify, by means of a smdl number of criteria which
rarely become conscious. Yet with regard to geometrical objects, the menta
development can lead to making criteria of recognition and classification
CONSCiOUS.

At least s0 it looks. Without expressing it verbally, one can make absolutely
conscious to onesdf and others what is a triangle, a circle; what are intersecting
lines, what is the structure of a cube. But it is much less clear why we ascribe
to an ivory die with rounded edges and vertices the shape of a cube, or more
poignantly said, the same shape as to a wooden die with sharp edges and corners.
What are the criteria? How is the die placed into the geometrical context where
it isjudged to represent a cube — in fact it stands as well in the contexts of
gambling and of probability. How are we able to agree about how badly a
rectangle may be drawn to be accepted as such, where the tolerance terminates
and where sharper requirements are to be made?
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Bagtiaan (5; 6) describes the shape of a piece of wood he says he needs, as “like the front
of acar”. It appears that he means a rectangle. Though adults would not say o, it is correct
that the front of many cars is roughly a rectangle.

Bagtiaan (6;0) says about an empty beer can which is somewhat compressed from two
sdes and shows roughly a square section: “Thisisaquadrilateral”.

Why are they rectangles and squares (this is what he meant). One could have
continued the conversation: “A rectangle has sharp corners, but this can is dl
curved.” But | myself had admitted it was roughly a square, and he would have
answered the same. Under certain circumstances “rectangle’ and “square”’ can
be excellent descriptions of things.

Bastiaan (6; 2) plays with a gtick with a longitudinal groove and two bottle tops he found
in the forest, as though it were a machine gun and two bullets. “What does a gun bullet
look like?" he asks though actually he knows how to draw it. | add: “A cylinder with a
cone on the top.” | do not believe he knew the word cylinder. Anyway he only asked what
isacone | sad: “A clown’s hat”. Then | let him show cylinders: pieces of trunks of trees
and trash baskets. | show him flat discs He agrees that they are cylinders though with the
reservation: “We shdl rather cal them discs” | ask him what you seeif you cut acylinder
“this way”. His answers have nothing to do with the geometric shape; they are related to
the particular cases. | help him with the word “circle’, which he apparently did not know.
I show him examples like the section of a tree, the rim of a trash basket, abutton, and
I mention sun and moon (or he himsdf did so), and finaly | show him the circular hole
in the top of a beer can. He protested: “This is a bit long”. Indeed it was dliptical — a
difference of lessthan 10%. The next day he used the word “circle’ correctly.

The sections of trees looked of course much less like circles than the hole in
the metal. But then he did not protest; about the hole he did. Why? Clearly
you cannot require so much geometrical shape from the section of a tree as you
can from the sharply bounded symmetric hole formed by a smooth curve. The
section of the tree did not pretend to be a circle but the dmogt circular hole
did and consequently it had to be judged by sharper criteria — something like
this must have been the background of his evaluation.

At the opportunity which | related in Section 128 | explained to Bagtiaan
what is a haf — he did not know this word, a least not related to length or
distance — by breaking a stick (not exactly) in half; he protested because one
half was a hit longer. Here again we observe the presence of the mental object
and the testing of the example — the first example — by the mental object.

Or do | abuse the term “menta object” and should | rather spesk of visud
imaginations? Well, it is visud imaginations but then different from those we
have of animals, trees, stones. The context of geometry implies that they are
normative imaginations, something like Plato’s ideas, though | would not like
to argue about the origin of these norms — it does not matter whether they
are objective, genetically determined or developmentally acquired.

Am | dlowed to name imaginations with this degree of exactness “mental
objects’? It is a meaningless question. | would rather ask another one. What is
the next step in the development? The concept circle, square, half? A definition
like “a circle is the locus of ...”, or in a modern style “a circle with centre M
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and radius r is . .."? No! The next step is a question — the question is how
to make a circle, how to produce a square, how to halve something. One can
suggest the answer by handing our material, or letting the child choose from
the materia that is offered. One can dso am for a mental construction by
sharpening the question to: “How can you make it more precisely?’.

Badtiaan (6;4) asks: “Where is the centre of Netherland?’ (Possibly he had heard about

Utrecht as such.) | tell him it is not easy to determine, and then: “What is your centre?’

He shows on his top. | argue it should rather be in his belly. Then | ask him about the
centre of atile of the pavement (Figures 88 and 89). First he denies its existence. Then he
shows what is approximately the centre. | ask him to do it more precisely. He produces
the groove between the next row of tiles and cuts it with an estimated mid-line between
the other sdes. | explain to him that it is eesier with oblique lines. He draws the diagonds.
I mention the word diagonal. At abench | ask him to indicate the diagona of its bottom.
He draws a line that forms an angle of 45° with the sides of the rectangle. | show indigna-
tion. He corrects himself immediately.

L]

)
{
Fig.88. Fig. 89.

Is the context of geometry not grasped until the question of the precise
construction arises in order to be answered? Anyway the question ischaracteristic
of a certain context. Even then the answer can be different according to how
precision is mentally measured — thistoo requires a context.

Summarising: Which symptoms indicate the ability to grasp a geometrica
context and to put objectsinto it?

By showing knowledge of what matters in the context, by way of

recognition,
classfication,

material reproduction,
naming,

mental reproduction

of mental objects and processes and by

making conscious to oneself and
describing

these activities.
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And how is “what mattersin the context” determined? By
natural, craftsman, manufactured, industrial reproduction,

paradigmatic examples,
explicitation.



CHAPTER 9

TOPOLOGY AS A GEOMETRICAL CONTEXT

In the original version, | continued Chapter 8 by the question “What is topol-
ogy?" The answer led me s0 deep into topology as a geometrical context that
the frame of the chapter was in danger to explode. Findly | felt compelled to
put topology as a geometrical context outside Chapter 8 as well as the planned
“Topography as ageometrical context” in order to resume the thread of Chapter
8 in Chapter 11.

9.1 What is Topology (Not)?

As ajoke topology is sometimes defined as the art of drawing badly. | will be
glad to take up thisjoke, but before | do so, | must offer some serious mathe-
matics in order not to interrupt the discussion at an inappropriate moment.

What is a curve? A point moves in the plane or in space, and a (planar or
spatid) curve isthe path described by the point. | mean of course amathematical
point, rather than that of a pencil.

“A point moves in the plane or space’” —what does it mean? The mathematic-
ian is ready to answer such a question: the place of the point is a continuous
function of a parameter t (the time).

Unfortunately, Peano gave an example of a continuous function that maps
a line segment (a time interval) upon a sguare (or a cube). A point that moves
continuously according to this function can behave madly enough to describe
a whole sguare (or cube). No, it is no madness — Peano’s examples are quite
reasonable and intuitive.

But of course that is not what people mean if they speak about curves. Our
definition was invaid as a description of the mental object that is present in
people’'s minds if they speak about curves. They mean something like athread,
not a piece of surface, not a piece of space.

What is wrong? | mean: why is there a gulf between the mental object and
the concept, between intuition and logic?

Thevillain iscontinuity. Continuity too is both amental object anda conceypt.
One has tried to define continuity in a way that justice is done to the mental
object, but apparently one did not succeed as one should have done.

Can the wrong be redressed? Can the concept of curve be defined in order
to exclude this kind of abnormality? Certainly, it can; for instance, by requiring
that the function defining the curve is differentiate, or that the curve defined
by the function has a well-determined tangent in each of its points — the Peano
curves lack this property practicaly at each point. This prevents abnormalities
but at the same time it excludes a whole host of legitimate curves, for instance
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each broken line, which as it happens has no tangent at the corners. In order to
save them, more compliance is recommendable: for instance by admitting
piecewise differentiable functions, curves that lack a tangent in a finite number
of points a most. Yes, this is an escape, but properly said, it is aloop-hole.
It is not satisfactory. A concept like curve belongs to topology and should be
defined in a topologicaly invariant manner, which means that each topologica

(one-to-one continuous) image should be of the same kind. Yet topologica
mappings do not respect differentiability.

“Curve’” should be some thread-like figure. The problem of how to define
such a thing reasonably, has been solved, but it would take us too far away to
explain and tojustify it; it would require too much theory.

The curves we tried to define were continuous images of a line-segment.
This means that they may have multiple points, the moving point may cross
its own path. Let us turn to a more handsome kind, smple curves, as it were.
Let us define:

A simple arc or Jordan arc is the topologica image (one-to-one continuous
image) of aline-segment.

A simple closed curve or Jordan curve is a topologica image of the circum-
ference of a circle.

Jordan’s name is atached to these objects because C. Jordan first proved
the famous

Jordan’s theorem: A Jordan arc in the plane does not divide the plane;
a Jordan curve in the plane divides the plane into precisely two parts.

The lagt assertion can even be strengthened: Let the plane Jordan curve K
be the image of the circumference C of a circle by means of the one-to-one
continuous mapping f. Then f can be extended to a topologica mapping of
the total plane, which in fact maps the interior of C upon that of K, and the
exterior of Cupon that of K.

One would not expect it otherwise. With the naked eye one can see that such
a Jordan curve divides the plane in two parts, both of which look like the
interior and exterior of a circle, topologicaly viewed.

Can you redly see it with your naked eye? Figure 90 is such a Jordan curve,
but Figure 91 too, with more bends and trunks, and you need your finger or a
pencil to ascertain what is the interior and what the exterior.

cx  (F

Fig. 90. Fig. 91.
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Topology as the art of drawing badly — indeed in order to put adrawing of
Jordan's theorem on the blackboard, one need not exert onesdf to come out
with a beautiful product. On the contrary one's effort may even be directed
towards producing an ugly curve, neither convex nor smooth, with bends and
trunks, as Figure 91. Or rather, one is advised to spare no pains to make it
as wild as possible in order to show the learner how eccentrically a Jordan curve
may behave. In fact, this is not superfluous if one wants to convince him that
such an obvious looking theorem as Jordan’s needs a proof — a proof that is
not at dl obvious and even not easy.

Once he has understood how complicated a Jordan curve may be, he can be
satisfied with simpler models. Or can he? Is an extremely complicated drawing
redly enough to convey the full idea of a Jordan curve? | recal an experience
from my own academic study, which gives me food for thought.

Fig.92.

Take two smilar logarithmical spirals (Figure 92), given in polar coordinates
7, o1 by

with fixed ¢ (0 < a < 1), which turn an infinite number of times around the
origin, add the origin itself and join the other ends by a line-segment. It yields
a Jordan curve K going through the origin. Sure, it is a Jordan curve, as nice as
a circle, and the origin is for this curve a quite common point, though it does
not look that way.

Now my own experience with this curve: | was decently familiar with topol-
ogy, knew that Jordan’s theorem requires a proof and knew proofs of it, knew
al that was known a that time on mappings of manifolds and mapping degrees,
and yet | was dumbfounded when | discovered that this was a Jordan curve
like others. Since nothing of this kind had ever be dreamt of by me as a portrait
of a Jordan curve, | got second thoughts about proofs of Jordan’stheorem as |
knew them. Possibly in such proofs appeds were made to — too restricted —
visua images of a Jordan curve, rather than to its formal definition, — a serious
mistake or a source of mistakes. My suspicion was unfounded, al was correct,
and meanwhile | got accustomed to this kind of curve.
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The logarithmic spira
r=a¥, 020

is the topological image of the s&t of non-negative reas ¢ 2 0,and if @< 1 this
image approaches, for ¢ = oo, r = 0 legitimately, that is, the origin. The s&t of
non-negative numbers completed with a point at infinity is topologicadly the
same as a line-segment, even though in mapping the one on the other one has
to run through it a an increasing speed. The spira together with the origin
is consequently the topological image of a line-segment, a Jordan arc. Two such
arcs that have only the endpoints in common (presently the origin and ¢ =0,
r=1) together with a connecting line-segment make up a neat Jordan curve —
nobody can doubt it.

Okay! But this mad point, the origin, which pretends to be a well-behaved
point of K, could it not behave badly with respect to the plane, that is, influence
badly how K lies in the plane? No, it cannot. The strengthened version of
Jordan's theorem asserts that a Jordan curve divides the plane, locadly and
globally, as a circle does, that is a given topologicad mapping of the curve
K on the circumference C can be extended topologicaly to the whole plane.

How then does the impression arise that the Jordan curve K composed by the
two spirds is lying differently in the plane than does a circle C? Well, ordinary
circles with the centre at the origin intersect K infinitely many times whereas
with C they would not do so more than twice. Yet this is not the way to look
at K if one wishes to study the neighborhood of the origin. One has to distort
the surrounding circles like spirds as one did with C in order to “straighten
out” the image.

All thisthen istopology:

the mental object of a closed curve with no self-crossings,

accounting conceptualy for it by the definition of a Jordan curve (the
one-to-one topologica image of acircle circumference),

the hesitation asto whether thisincludesthe* pathologica” K,
the confirmation that the definition includes K,

the question of what caused the hesitation,

the certitude that the hesitation was unjustified.

This is topology, and it is a non-trivial sequence of steps in topology. Non-
trivial, because the course could have been different, which | will show by
another example.

Let us mount one dimension higher, where even bad drawings serve no
purpose, good or bad. Let us define:

A Jordan disc as the topologica image (in space) of a circular disc.

A Jordan sphere as the topological image (in space) of an ordinary spherical
surface.
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Jordan-Brouwer’s theorem: A Jordan disc does not divide space; a Jordan
sphere does divide it into precisely two parts.

However, with the strengthening, as formulated for Jordan curves, it goes
wrong: the interior of a Jordan sphere can now behave very badly. It need not
look like the legitimate interior of an ordinary sphere, as appears from an
example of Antoine-Alexander — the “horned sphere’.

The mental object (or imagination) of a

sphere-like surface
is imperfectly accounted for by
the conceptual definition (topologica image of an ordinary sphere).
S0 | can acquiesce in the fact that
my mental object is less handsome than | thought,
or try
arevision of my conceptua definition,
such as not to admit of the discovered pathology. This has indeed been tried by
digtinguishing
tame Jordan spheres

which are lying as neatly in space as | intended with my mental object.

Properly said the difficulties started much earlier, with the concept of con-
tinuity (of functions and mappings), which | aready indicated. The concept of
continuity evolved in history from a mental object that for centuries had been
clear enough in the mindsof mathematicians that it needed no precise definition.
The reason why they could do without it was not the clear mind and vision of
these mathematicians, but the mathematics they cultivated. As long as discon-
tinuity played no great part, there was no need for more clarity on continuity.

A continuous function f that is negative for a and positive for b, must vanish
somewhere in between (Figure 93) — blind man can fed it, and dso that the

Fig.93.

same would not be true for discontinuous functions. The drawing to illustrate
it can be as bad as one likes it, or — by preference — even worse. It is aremark-
able fact that Cauchy who gave the modern definition of continuity — amost
simultaneously with Bolzano — initialy did not care to prove this theorem;
initidly he appeded to the drawn image. On the other hand, for Bolzano the
need for a proof of this theorem was just the starting point for his anaysis of



TOPOLOGY 255

the mental object “continuity”, which led him, too, to the modern definition.
Yet Bolzano's interest and strength in mathematics was the analysis of mental
objects rather than the creation of mathematical contents. Cauchy, however,
continued working with the mental objects even where he had performed
conceptual analyses — in limits, continuity, derivative, integral, and s on.

Once the definition of continuity was accepted, it appeared to admit func-
tions as continuous which trespassed the limits of primitive imagination. It
lasted for quite a while until the majority of mathematicians acquiesced in this
unavoidable consequence. That is to say, difficulties arose where the step from
the mental object to the concept had not been taken in an early stage. New
generations soon got accustomed to this. Taught by the accepted definition of
continuity, they revised the primitive mental object. But do not forget: the
primitive mental object was indispensable — higtoricdly in the development
of mathematics — and it remains indispensable, inthe mathematical devel opment
of the learner, as an endpoint, or as a stage on the way to the more sophisticated
mental object.

With objects that one habitually recognises as geometricd, it is different. As
| stressed severd times, one can advance very far in geometry without transform-
ing the mental objects into concepts. If finally one lends them more precision by
putting the mental objects as concepts into a logicd system — agebraic or
axiomatic — one will not be taken by surprise. Made even more precise they
will show the expected properties.

Some redrictions should be made. The mental object “rectangle” might
origindly not have included the square, but as one progresses one gets convinced
that it is better to include it, dthough in everyday language one would not cal
a rectangle something that is clearly a square. One would prefer to count the
sgn of a priority road among the rhombuses rather than the sguares. It was
probably not anticipated in ong's mental object that a parallelogram has no axes
of symmetry. But once drawn to one' s attention, this is soon redressed.

A more serious thing is paradoxes, well-known in elementary geometry:
by the wrong imagination of lines intersecting inside — rather than outside
— atriangle, one can be led into contradictions. It is remarkable that the source
of this mistake is somehow topologicd. It is a shortcoming of the visud indgght
into order properties — order, indeed, is a weak form of topology.

Nevertheless it may be assarted that ordinary geometry admits of a deep
penetration before the mental objects must be sharpened into concepts, and
even this can be restricted to a loca procedure. It does not require a system,
a global frame. Earlier on* | have shown how far this road can be followed even
in analysis, how long continuity as amental object suffices, as does the integral,
as ageometrically viewed area.

In spite of dl visuality in which topology can flourish, it is a different case.
Since the watch-word Modern Mathematics has been heard, topology has more

* Mathematics asan Educational Task, Chapter XVII.
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and more been propagated as part of mathematical instruction. The harvest
has not been impressive: tesselations, graphs, the Euler polyhedron formula,
the Moebius stip, perhaps even surfaces of higher genus, but in spite of dl good
intentions, it remains short runs and dead ends. With regard to our preceding
exposition this is easily explained. Mental objects do not lead far in topology;
concept formation is required to pass beyond the limits, and then concept
formation which means more than loca organisation. The concept former has
mental objects in his mind, and ever new mental objects are formed on ever
higher levels — spaces and varieties of arbitrary dimension and structure and
their mappings, connected with algebraic structures — in order to be concep-
tualised again.

And how much is not required for the conceptual sharpening, for limit,
boundary, continuity — not to speak of dimension and connection. It is concept
formation on a high level, sophigticated aternations of quantifiers — for each
e there isa § — and then not separated from the mental object but starting with
it, keeping it in ones grasp, faling back on it, because unless much routine
is acquired, it is a hard thing to manipulate the concept divorced from the
mental object.

Or should we look for the conceptual sharpening of these mental objects
elsewhere, not in topology?

9.2. The Topological Context — Is This Topology?

| started the preceding section with the pun of characterising topology as the art
of drawing badly. Perhaps | had looked too much at Piaget* who deduced from
the poor drawing techniques of the little ones that “représentation de | espace”
starts topologicaly. | explained meanwhile that the argument of the bad drawing
techniques rests on false delimitations and the paraleling of ikonic and symbolic
intentions of the experimenter who sets the task, and of the subject who per-
forms it.

Meanwhile | myself have stuck to the argument of bad drawing although at an
earlier stage | had asked with regard to representation that we should digtinguish
imagination and reproduction, and not identify the mental object with its
picture. Of course this meant that my topology is left stranded in the plane
because that is the domain where drawings are made. Properly said, | should
rewrite the preceding section, but you cannot keep changing. Moreover it is a
good opportunity to show the reader what was wrong. It is a habit | will never
unlearn, in spite of efforts to change my own life and that of others. Again |
started at the wrong end, &t the topology which | know, to be sure a alow level
but then from its upper rather than its lower side. “Topology” soon suggests
“topological mappings’. It is readily understood as identifying objects by one-
to-one continuous mappings and forgetting about more primitive ideas preceding
it. | took too serioudly that topology to which Piaget had paid lipservice.

* J. Piaget and Bérbel Inhelder. Chapter 8.1.



TOPOLOGY 257

Bad drawings — you can never draw so badly that it becomes topology. One
can draw a rectilinear triangle so badly that it is neither right nor isosceles.
(Unfortunately not so that it is neither acute nor obtuse and this then creates
the chance to be mided by the mental object.) One cannot draw a continuous
function in a manner that it is only continuous, even not approximately. Well,
in the case of the Peano function one succeeds in suggesting by a few steps the
whole sequence, and dl the so-called pathological cases are being approximated
systematically by non-pathological ones. But dl this is far away: it presupposes
too much sophistication.

| shdl start at the other end, not with the concept, in order to uncover the
mental objects where they are rooted, but in a more naive way. Yet how
naive can you behave if you have learned a lot of topology?

| note down afew words:

connection, arc, dimension, hole, border, tunnel, cave, path, circulation,
braids, knots.

Where should | start? How systematically? How unsystematically?

9.3. Connection

Connection looks the most primitive. One's own body is connected, though
disconnected from others. A tree is a connected whole from the roots to the
top, separated from other trees, but you can cut it, into pieces. The network
of streets of a city — a connected whole. A river from source to mouth with
dl its tributaries — connected. The pathways around a block of houses, but
— mind! — do not cross “Continent” means connected; an idand is a thing
detached. But how about a peninsula? Three sides water, the fourth land — |
learned. How wide is the fourth alowed to be in order to leave it a peninsula?
And how if you pierce the ishmus? And then build a bridge over the cana?

94. Jordan Arc

A string is connected until it is cut, and then pieces can be tied together — the
break—make transformation. But the string can dso be split, into connected
threads, side by side. Was the string disconnected before it was split? As atwine
of threads it was connected; if they are untwined, it is another object, which
is disconnected.

The string suggests a mental object

acurve, which may cross itself
if I throw it casudly on the table, but if | avoid salf-crossings it suggests a

Jordan arc,
the simplest connected figure.
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The smplest because it can be
split by apointlike cut,
and because it can be seen &s
part of any connected figure;
the
points of a connected figure arejoinable arcwise.

Though the string is flexible, there is not much stretch in it. In this respect it is
not examplary for the mental object arc. A rubber string is better, but dso
too specid, because its stretching behaviour is a similarity.

All arcs are the “same’.
One can se it and understand what it means. One can materidise it

by laying them upon each other, with stretching and shrinking.

9.5. Continuity

One more step? | hesitate. The word “samée’ | used above can be put into a
broader context by defining for dl that is connected, continuity of mapping:

continuous is that which nowhere breaks the connection.

(Etymologicaly “continuous’, indeed, means connected, this then was the
mental object that preceded the modern concept of continuity.)
Furthermore one defines for a mapping

one-to-one-ness: it neither folds nor glues; what is different, staysdifferent.
A mapping can be

topological: one-to-one, continuous.
Two Jordan arcs are topologicaly the same.

9.6. Linear Order

If I cut astring, | get two strings, which | can again compose. Is the point of
the cut broken into two points, which are afterwards analgamated? Well, the
concrete string is concretely cut; the cut is no mathematica point. Cutting the
arc can be described as you want it, among others, by having a point divided in
two points, which afterwards are identified. | may dso demand that the point
of the cut is attributed to one part only. Then | get an

arc with an open end.
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Equally well can | imagine an
arc with both of its ends open,

such as
the infinite straight line.

If this one is cut without doubling the point of cut, | get two arcs
with one and two open ends,

respectively.
On an arc thereis anatural concept

between;

b between a and c if by the cut at b the pointsa and ¢ get into different pieces.
As a consequence of betweenness an arc possesses

two — opposite — orders.

Topologica mappings

preserve betweenness,
an order passesinto an order.

9.7. Mathematical Comments

How do the various objects depend on each other?

Connection looks like the most primitive concept though initidly it is rather
vague.

Jordanarc, illustrated by rope or rubber stringlooks more sharply determined.

Afterwards connection is more sharply described: the arc is an example of
connection; moreover it is stated that two points of a connected figure are
arcwisejoined — as it were acriterion to test connection. It is, however, not the
officia definition; there are examples of (not too mad) sets which one would
like to cdassfy as connected though they are not 0 in the sense of arcwise
connection.

Continuity in the sense of preservation of connection is not the officia
definition. One can make red functions that map intervals on intervals (accept
between two values any intermediate value) but which are not continuous in
any reasonable way. Continuity of real functions requires the originas (rather
than the images) of intervals to again consgt of intervals. However, for one-to-
one mappings conservation of connection is a valid criterion of continuity in
the usua sense. Conseguently, with the suggested definition of continuity the
definition of a mapping to be

topological as one-to-one continuous
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isvalid. By thismeans

Jordan arc as atopological image of a line-segment becomes more explicit,
though the logica circle

arc

connected = arcwisejoinable
continuous = connection preserving
topologica = one-to-one continuous

arc = topologica image of aline-segment

is not broken.

9.8. More About Connection

A closed rubber string is connected, a Jordan arc the ends of which are tied
together:

aJordan curve.

One cut suffices to transform a Jordan curve into a Jordan arc. A Jordan curve
can be seen as the

topologica image of a circle circumference.

The Jordan theorem says that a Jordan curve in the plane breaks the connec-
tion of the plane into an interior and an exterior — a visud property which does
not ask directly for a proof.

Is a chain connected? Roughly viewed it is. But the fine structure of a loosdly
held chain suggests a system of linked Jordan curves — if tightened it looks
connected. If | am right to require that the points of a connected figure can be
joined by arcs, the loose chain according to its fine structure may not be dubbed
connected. But how to separate its parts? How to separate in genera two linked
Jordan curves in space? Concretely, | open a link in order to close it after the
separation. A pair Ky, K, of linked Jordan curves can be mapped topologica
upon a pair Ky, K, of unlinked ones. K, upon K3, and K, upon Kj. This
mapping, however, is restricted to the curves themselves; it cannot be extended
to space as a whole. The K, K, and K, K3 viewed as such are topologically
the same but they are lying differently in space — a visuadly clear fact that
does not ask directly for a proof.

The example of the loose chain shows that “connection” as a mental object
is not as simple as it looks. The linked curves K,, K, though separated, cannot
be pulled from each other. The pair K,, K, is topologicaly equivalent with
the unlinked pair K, K;. We consider the figure consisting of X, and K,
as not connected, because we mean connection as an intrinsically topological
concept, independent of the situation of the figure in space.
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9.9-9.16. DIMENSION

9.9. Three Approaches
Old geometry texts start with the somewhat classical definitions:

apoint isthat which has no parts,
aline is alength without width,
a surface is alength and width without thickness.

Another s&t of definitions isthe following:

aline arises from a moving point,
a surface arises from a moving line,
a space arises from a moving surface.

Starting at the other end one gets the sequence of definitions:

surface is the boundary of a body,
line is the boundary of a surface,
points are the boundaries of lines.

All these definitions interpret visua experiences, but they do it in away that
does not directly lead from mental objects to concepts, though for centuries
philosophers have believed in this possibility.

9.10. TheFirst
As to the first sequence:

there are objects (spots) small enough to suggest something so smal that
it can be divided no further,

there are objects (threads) the width of which palesin significance besides
its length, suggesting in this way something with alength without awidth,

there are objects (sheets) whose thickness paes in significance besides
the other extensions, suggesting in this way something with length and
width and without thickness.

The suggested mental objects point, line, surface are conversely useful to describe
certain properties and aspects of real objects (spots, threads, sheets).

In order to sharpen the mental objects conceptudly one has to start at the
visudly clear “height, width, thickness’ — three aspects of use of the same
mental objects, which, however, are not interpreted as a measured magnitude.
How long, wide, thick does not matter; rather the extensions are meant qualita-
tively. The simplest object of this kind is a Jordan arc — the simplest length
without width; the smplest surface would be the cartesian product of two
Jordan arcs. But one would certainly not be satisfied with these choices. A
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Jordan curve and much more complicated thread-like figures shdl be considered
as lines, and spherical surfaces (which are not cartesian products of two factors)
shdl be 0 as surfaces. This can somehow be redressed by interpreting the
definitions locally, but even then one is left with difficulties — how should |
understand that an 8-like curve has a length but no width in the double point?

9.11. The Second

Let us pass to the second sequence of definitions. They are more precise than
those of the first sequence, but we aready know that as early as the first step
the sequence goes wrong. The moving point — the continuous image of a line-
segment viewed as atime interval — may cover a square and even a cube. This
can be redressed by adding differentiability requirements, so that the line
becomes a differentiable curve, the differentiably moving line a differentiable
surface, the differentiably moving surface a differentiable piece of space. With
the rise of Caculus lines, surfaces, spaces have, indeed, been interpreted in
this way. But adding a new “motion” parameter, lines, surfaces, spaces were
described, that is, by functions of one, two, three parameters, a “variable”
point with co-ordinates x,, x,, x3 wasgivenby

x; = fi(s),
x;i = fi(s, 1),
Xi =f;'(3, t’ u),

respectively. The functions f; were supposed to be “continuous’, which in fact
included differentiability of any desired order. Moreover “independence” of
the functions f;, f,, fs wasassumed in order to exclude degenerations of spaces
into surfaces, surfacesinto lines, linesinto points.

With dl these sophigtications we are far away from the intended mental
objectsline, surface, space.

9.12. The Third

Let us now look a the third sequence of definitions. The striking distinction
compared with the others is the start a the top, with the bodies, bounded
by surfaces, which are defined by this capacity, that is as boundaries. Well,
the definition yields closed surfaces only. This can be redressed by admitting
extended pieces of surfaces again as surfaces. Their boundaries in turn yield
lines — primarily closed lines, but afterwards dso pieces of them. Lines in
turn are bounded by points. It seems to work better than the first and second
approach. It starts at the top, with bodies, in three dimensions. The descent
to a lower dimension is systematic: the object is deprived of its fullness; the
pedl is |eft; the thickness of the body is log, it is reduced to its boundary, the
width of the surface is logt by leaving only its border, and the length of the line
by leaving the endpoints.
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The firgt two sequences are clearly inspired by the idea that asin arithmetic
one starts a 1, S0 in geometry one has to start a the point. But as a cognitive
development geometry certainly does not start with points. Earlier on | have
put the rigid bodies first and foremost in the development, and if there were
anythingthat | would alow to be detracted from bodies, it would be the solidity,
rather than the bodylikeness.

9.13. Surfaces

Surfaces occur primarily — as the name says — as faces of something, as walls,
tabletops, floors, waterlevels, peds, skins, clothes that wrap, bags that comprise,
barrels that contain something. Primarily, | said, because in the long run we can
detach the surfaces from the bodies of which they are boundaries, even while
using the word surface*

Sals and flags in the wind, leaves of trees, sheets of paper, curtains are objects
that suggest surface without being surface of something. But unlike the surfaces
of something they have two sides, right and left, or upper and lower, and if
indeed they wrap something, indde and outside — Sdes that can differ by their
look, but which primarily haveto do with their situation in space.

Yet quite different physica objects can suggest surfaces. a fence, some
wire-netting, a railing. They delimit space though not in the strict sense of
inaccessibility; in spite of the holes they mark boundaries. The filled net is a
particularly striking example, a surface pervious to water, but not to fish. Even
one dosad curve in space can suggest the surface it spans, and this holds to an
even higher degree for nets of closed curves as found in wire-netting.

One step further: Independently of any embedding in space a cut-out or an
atlas may suggest a surface, even surfaces which are not without deformations
or not a dl redisable in space, such as the well-known rectangle model of a
torus (Figure 94) or the circle model of the projective plane (Figure 95).
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Fig. 94. Fig. 95.

9.14. Lines

After the efforts to show the phenomenologica origin of “surface” as “surface
of something” one may expect, in order to get awell-shaped closed system, that

* The German language knows Flache and Oberflache. English and French are restricted
to one term, surface.
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a gmilar origin of “ling" is postulated, that is as boundary — or piece of a
boundary — of a surface. Systematics is excellent in an a posteriori synthesis,
but not as an anayticd principle. Systems are artful and artificia and for these
reasons sometimes useful, but let us not yield to this seduction.

There are, indeed, numerous examples of lines suggested by borders or pieces
of borders; in particular circlesfirst appear as rims of cups, dishes, bowls, buckets,
whedls, of the sun and the full moon, and as the horizon. If we use the termcircle,
but dso triangle, square, rectangle, we often do not know whether we mean the
surface or its boundary. The child is early taught to reproduce an object by
drawing what appears as its circumference — perhaps againg a natural inclination
to draw a whole surface, which attempt isinterpreted by the adult as scribbling.
On the other hand we know that for other lines, in particular straight ones, a
quite different phenomenologica origin can be indicated. In Sections 85 and
8.7 | have argued this forcefully for the straight lines. As objects and processes
that suggest straight lines, or at least rectilinearity, | mentioned

arrows, trunks, gicks, pins, rims, edges, paths, folds, cuts, stretched
strings.

Some of them can, depending on the actual situation, aso suggest curvilinearity,
for instance strings if not stretched. Rims, edges and folds derive from circum-
ferences; cuts too, and certainly so if something is cut out. Nevertheless there
are enough examples left of another kind of origin of the mental object “line’
than as a border. In order to systematise this wealth of examples, | put on
record four roots of the mental object line:

arrow,
string,
path, cut,
border,

and their mathemati sations

arrow: line segment;

string: continuous image of a line-segment with a surveyable number of
sf-crossngs*

path aswell as cut (viewed as covered in time): continuous image of atime
interval with a surveyable number of sdf-crossngs*

border: boundary of a piece of surface.

Whereas in the case of surface the phenomenological analysis led to a primary
“surface of something” and a secondary abstraction from the spacdike sub-
stratum, we recognise in the case of “line” a fourfold root the components of
which are phenom